• 제목/요약/키워드: Active suspension system

Search Result 263, Processing Time 0.029 seconds

Linear Quadratic Control with Pole Placement for an Automotive Active Suspension System (극점배치기능을 갖는 LQ제어기 설계 및 자동차 능동 현가장치 제어에의 응용)

  • 최재원;서영봉;유완석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.513-517
    • /
    • 1995
  • In this paper, a relation of matrix Q in cost function to distances between the closed-loop and open-loop poles of a multi input controllable systems is studied. Futhmore, the state feedback gain with exact desired eigenvalues in the LQR is computed. The proposed scheme is applied to designing automotive active suspension control system for a half-car model and its performance is compared with the existing LQR control system design methodology.

  • PDF

$H_{2}$/$H_{\infty}$ control of active suspension system (능동 현가 시스템을 위한 $H_{2}$/$H_{\infty}$ 제어기 설계)

  • 정우영;김상우;원상철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.888-891
    • /
    • 1996
  • The objective of a mixed H$_{2}$/H$_{\infty}$ controller of active suspension system is to achieve not only the general performance improvement(H$_{2}$) but also the worst case disturbance rejection(H$_{\infty}$). In this paper, a mixed H$_{2}$/H$_{\infty}$ controller for an active suspension system, comparing the performance with that of an H$_{2}$ controller and of an H$_{\infty}$ controller.ler.EX> controller.

  • PDF

Semi-Active Control for Improving Ride Comfort in Railway Vehicle by MR Damper (MR 댐퍼를 이용한 철도차량 승차감 반능동 제어)

  • Shin, Yu-Jeong;You, Won-Hee;Jung, Heung-Chae
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1929-1934
    • /
    • 2011
  • Recently the maximum speed becomes the most important performance in high speed train. But the speed up of train will not give the passenger good riding comfort. The semi-active suspension system by using variable damper with hydraulic solenoid valve is used to solve this problem. But the variable damper with hydraulic solenoid valve requires tank for supplying fluid. In this study, the MR(Magneto Rheological) damper was considered instead of hydraulic variable damper in order to improve riding comfort. Dynamic simulation was conducted for semi-active suspension system with MR damper was made by using Matlab-Simulink S/W. According to control strategy of MR damper for improving ride comfort in railway vehicle, The riding comfort of the railway vehicle with semi-active suspension system was analyzed and compared with conventional suspension system by using the program.

  • PDF

Performance characteristics of a vehicle active suspension system with an optimal variable structure controller (최적 가변구조제어기를 갖는 차량 능동 현가시스템의 성능특성에 관한 연구)

  • 김주용;장효환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1161-1166
    • /
    • 1993
  • The performances of a vehicle active suspension system with an optimal variable structure controller are compared to those of passive suspension system and active suspension systems with sky-hook and optimal controllers. The quater car model has a 2 DOF which accounts for vertical motions of a sprung and a unsprung masses. The transient responses are analyzed when a vehicle passing through a bump with a constant speed and the frequency responses are analyzed for white noise input at wheel. Particulary, RMS responses are also analyzed. It is shown that the optimal variable structure controller gives better performance of the vehicle active suspensio system than an optimal and a sky-hook controller.

  • PDF

ENHANCEMENT OF VEHICLE STABILITY BY ACTIVE GEOMETRY CONTROL SUSPENSION SYSTEM

  • Lee, S.H.;Sung, H.;Kim, J.W.;Lee, U.K.
    • International Journal of Automotive Technology
    • /
    • v.7 no.3
    • /
    • pp.303-307
    • /
    • 2006
  • This paper presents the enhancement of vehicle stability by active geometry control suspension(AGCS) system as the world-first, unique and patented chassis technology, which has more advantages than the conventional active chassis control systems in terms of the basic concept. The control approach of the conventional systems such as active suspensions(slow active, full active) and four wheel steering(4WS) system is directly to control the same direction with acting load to stabilize vehicle behavior resulting from external inputs, but AGCS controls the cause of vehicle behaviors occurring from vehicle and thus makes the system stable because it works as mechanical system after control action. The effect of AGCS is the remarkable enhancement of avoidance performance in abrupt lane change driving by controlling the rear bump toe geometry.

Hybrid Control of an Active Suspension System with Full-Car Model Using H$_{}$$\infty$/ and Nonlinear Adaptive Control Methods

  • Bui, Trong-Hieu;Suh, Jin-Ho;Kim, Sang-Bong;Nguyen, Tan-Tien
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.12
    • /
    • pp.1613-1626
    • /
    • 2002
  • This paper presents hybrid control of an active suspension system with a full-car model by using H$\sub$$\infty$/ and nonlinear adaptive control methods. The full-car model has seven degrees of freedom including heaving, pitching and rolling motions. In the active suspension system, the controller shows good performance: small gains from the road disturbances to the heaving, pitching and rolling accelerations of the car body. Also the controlled system must be robust to system parameter variations. As the control method, H$\sub$$\infty$/ controller is designed so as to guarantee the robustness of a closed-loop system in the presence of uncertainties and disturbances. The system parameter variations are taken into account by multiplicative uncertainty model and the system robustness is guaranteed by small gain theorem. The active system with H$\sub$$\infty$/ controller can reduce the accelerations of the car body in the heaving, pitching and rolling directions. The nonlinearity of a hydraulic actuator is handled by nonlinear adaptive control based on the back-stepping method. The effectiveness of the controllers is verified through simulation results in both frequency and time domains.

Technical Trend of Semi-Active Suspension of Japanese Shinkansen (일본 신간선의 진동제어 기술 현황)

  • Kim, Sang-Soo;Arai, Junichi;Mok, Jin-Yong;Kim, Young-Kuk;Kim, Ki-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.440-443
    • /
    • 2005
  • To improve the riding comfort of high speed trains, it needs active suspension system for railway more and more. In Japan, the high speed train, Shinkansen has adopted semi active suspension system and now it is running in the main trunk. In Korea, Koeran Train Express (KTX) is opened to commercial traffic and Korea High speed Railway (HSR350) is being developed. So the vibration control of the high speed train becomes important. In this paper, we introduce technical skill of Japanese semi active suspension Shinkansen to be helpful to the related researcher.

  • PDF

Output feedback, decentralized controller design for an active suspension system using 7 DOF full car model (7 자유도 차량 모델과 출력 되먹임을 이용한 자동차 능동 현가장치 설계에 관한 연구)

  • 노태수;정길도;홍동표
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.871-875
    • /
    • 1996
  • The Output feedback linear quadratic regulator control is applied to the design of active suspension system using 7 DOF full car model. The performance index reflects the vehicle vertical movement, pitch and roll motion, and minimization of suspension stroke displacements in the rattle space. The elements of gain matrix are approximately decoupled so that each suspension requires only local information to generate the control force. The simulation results indicates that the output feedback LQ controller is more effective than purely passive or full state feedback active LQ controllers in following the road profile at the low frequency range and suppressing the road disturbance at the high frequency ranges.

  • PDF

Semi-Active Control of a Suspension System with a MR Damper of a Large-sized Bus (MR 댐퍼를 이용한 대형 버스 현가장치의 반능동 제어)

  • Yoon, Ho-Sang;Moon, Il-Dong;Kim, Jae-Won;Oh, Chae-Youn;Lee, Hyung-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.683-690
    • /
    • 2012
  • In this work, the semi-active control of a large-sized bus suspension system with an MR damper was studied. An MR damper model that can aptly describe the hysteretic characteristics of an MR damper was adopted. Parameter values of the MR damper model were suitably modified by considering the maximum damping force of a passive damper used in the suspension system of a real large-sized bus. In addition, a fuzzy logic controller was developed for semi-active control of a suspension system with an MR damper. The vertical acceleration at the attachment point of the MR damper and the relative velocity between sprung and unsprung masses were used as input variables, while voltage was used as the output variable. Straight-ahead driving simulations were performed on a road with a random road profile and on a flat road with a bump. In straight-ahead driving simulations, the vertical acceleration and pitch angle were measured to compare the riding performance of a suspension system with a passive damper with that of a suspension with an MR damper. In addition, a single lane change simulation was performed. In the simulation, the lateral acceleration and roll angle were measured in order to compare the handling performance of a suspension system using a passive damper with that of a suspension system using an MR damper.

A Study on Adopting Active Suspension Control in Sky Hook System (스카이훅 시스템에의 능동 서스펜션 제어 이론 적용에 관한 연구)

  • Park Jung-Hyen;Jang Seung-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.950-955
    • /
    • 2006
  • This paper prosed modelling and design method in suspension system sesign to analyze sky hook damper system by adopting active suspension control theory. Recent in the field of suspension system design it is general to adopt active control scheme for stiffness and damping, and connection with other vehicle stability control equipment is also intricate, it is required for control system scheme to design more robust, higher response and precision control equipment. It is hon that sky hook suspension system is better than passive spring-damper system in designing suspension equipment. We analyze location of damper in sky hook system and its motion equation then design robust control system. Numerical example is shown for validity of robust control system design in active sky hook suspension system.