• Title/Summary/Keyword: Active reaction layer

Search Result 117, Processing Time 0.025 seconds

Metal-Organic Vapor Phase Epitaxy III. Atomic Layer Epitaxy (MOVPE 단결정층 성장법 III. 원자층 성장법)

  • 정원국
    • Journal of the Korean institute of surface engineering
    • /
    • v.23 no.4
    • /
    • pp.197-207
    • /
    • 1990
  • Atomic layer epitaxy is a relatively new epitaxial pprocess chracterized by the alternate and separate exposure of a susbstrate surface to the reactants contaning the constituent element of a compound semicoductror. The ideal ALE is expected to provide sevral advantageous as petcts for growing complicated heterostrutures such as relativly easy controls of the layer thinkness down to a monolayer and in forming abrupt heterointerfaces though monolayer self-saturatio of the growth. In addition, since ALE is stongly dependent on the surface reaction, the growth can also be controlled by photo-excitation which provides activation can be energies for each step of the reaction paths. The local growth acceleration by photo-excitation can be exploited for growing several device strures on the same wafer, which provides another important practical advantage. The ALE growth of GaAs has advanced to the point the laser opertion has been achieved from AlGs/GaAs quantun well structures where thee active layers were grown by thermal and Ar-laser assisted ALE. The status of the ALE growth of GaAs and other III-V compounds will be reviewed with respect to the growth saturation behavior and the electrical properties of the grown crystals.

  • PDF

A study about composition of $Al_2O_3/Al_2O_3$ brazing reaction layer and behavior of Ti using active filler metal (Ti가 함유된 Active Filler Metal을 이용한 $Al_2O_3/Al_2O_3$ Brazing 반응층의 조성과 Ti 거동에 관한 연구)

  • Son, Won-Geon;Chang, Sung-Chin;Kim, Eun-Sup;Moon, Hung-Sin;Kim, Kyung-Min;Park, Sung-Hyun;Shin, Byoung-Chu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.253-254
    • /
    • 2009
  • 본 연구는 다결정 알루미나 소결체와 사파이어웨이퍼(sapphire wafer)의 견고한 접합을 위해 활성금속 Ti가 함유된 Active Filler Metal을 사용하였고, 이를 브레이징한 후 접합 반응층과 Ti 거동 특성에 관한 것이다. 브레이징 (brazing)은 Ar 분위기 종에 $850^{\circ}C$에서 이행하였으며. 이때 다결정 알루미나, 사파이어와 Active Filler Metal 사이의 접합 반응층을 확인하였다. Active Filler Metal 내어| 존재하는 Ti가 접할 반응층의 양계면에 집중되는 것을 SEM을 이용하여 확인하였다. 또한 EDS Line Scanning을 실시하여 접합부에서 원소들의 분포를 관찰하였다.

  • PDF

Nitridation of Silicon Powder Compacts in Air (Air 분위기에서 규소성형체의 질화반응)

  • 최석홍;안영필
    • Journal of the Korean Ceramic Society
    • /
    • v.25 no.4
    • /
    • pp.380-384
    • /
    • 1988
  • This investigation includes nitridation phenomena of silicon powder compacts in air. Nitridation reaction condition has been provided with using silicon nitride bed and active carbon additive. Reaction products are Oxynitride, $\alpha$-Si3N4, and $\beta$-Si3N4, Oxynitride(Si2N2O) phase in formed at outer surface layer ofsilicon powder compacts. $\alpha$-Si3N4, and $\beta$-Si3N4 are formed at inner region of powder compacts. Microstructural observation indicates that nitridation mechanism in this work is the same as conventional nitridation mechanism nitrogen gas.

  • PDF

Characterization of Electric Double-Layer Capacitor with 0.75M NaI and 0.5 M VOSO4 Electrolyte

  • Chun, Sang-Eun;Yoo, Seung Joon;Boettcher, Shannon W.
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.20-27
    • /
    • 2018
  • We describe a redox-enhanced electric double-layer capacitor (EDLC) that turns the electrolyte in a conventional EDLC into an integral, active component for charge storage-charge is stored both through faradaic reactions with soluble redox-active molecules in the electrolyte, and through the double-layer capacitance in a porous carbon electrode. The mixed-redox electrolyte, composed of vanadium and iodides, was employed to achieve high power density. The electrochemical reaction in a supercapacitor with vanadium and iodide was studied to estimate the charge capacity and energy density of the redox supercapacitor. A redox supercapacitor with a mixed electrolyte composed of 0.75 M NaI and 0.5 M $VOSO_4$ was fabricated and studied. When charged to a potential of 1 V, faradaic charging processes were observed, in addition to the capacitive processes that increased the energy storage capabilities of the supercapacitor. The redox supercapacitor achieved a specific capacity of 13.44 mAh/g and an energy density of 3.81 Wh/kg in a simple Swagelok cell. A control EDLC with 1 M $H_2SO_4$ yielded 7.43 mAh/g and 2.85 Wh/kg. However, the relatively fast self-discharge in the redox-EDLC may be due to the shuttling of the redox couple between the polarized carbon electrodes.

Regulation of Electrochemical Oxidation of Glucose by lonic Strength-Controlled Virtual Area of Nanoporous Platinum Electrode

  • Kim, Jong-Won;Park, Se-Jin
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.3
    • /
    • pp.203-206
    • /
    • 2007
  • Electrochemical reaction of glucose was regulated by the electrochemically active area of nanoporous platinum, which is controlled by ionic strength. The profile of the oxidation current of glucose vs. ionic strength was identical with that of the electrochemically active area. This result confirms that the nanopores are virtually opened for the electrochemical reaction of glucose when the ionic strength climbs over a specific concentration and implies that the electrochemical reactions on nanoporous electrode surfaces can be controlled by concentration of electrolyte.

Study on the feasibility of metallic saggar for synthesizing NCM cathode active materials-I (NCM 계 양극활물질 합성용 금속질 내화갑 가능성 연구-I)

  • Yong Il Park;Ji Hun Jung;Sung Hyun Woo;Jung Heon Lee;Hyeong-Jun Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.34 no.3
    • /
    • pp.103-107
    • /
    • 2024
  • In this study, nickel, a pure metal material, was proposed as a saggar for synthesizing NCM [Li(NixCoyMnz)O2] cathode active material. Nickel is known as a metal that is resistant to oxidation and has a high melting point. Nickel is one of the main components of NCM cathode material and was expected to be free from problems with contamination from saggar during cathode material synthesis. We sought to confirm the possibility of nickel as a saggar for synthesizing NCM cathode active materials. When a Ni metal crucible and Ni0.8Co0.1Mn0.1(OH)2 (NCM 811) precursor material were reacted at 900℃ for a long time, the change in the reaction layer on the surface of the crucible over time was analyzed. The nickel crucible reaction layer formed during heat treatment at 900℃ was nickel oxide, and is thought to have been created by simultaneous oxygen diffusion from the cathode precursor oxide and reaction with oxygen in the atmosphere. The change in thickness of the oxide layer appears to slow down after 480 hours, which suggests that the rate of oxygen diffusion from the precursor is reduced. It remained combined without falling out of the crucible until 480 hours. However, it was confirmed that the oxide layer falls off after 720 hours, so it is thought that it can be used as saggar for NCM synthesis only for a certain period of time.

Oxidation Behaviors of SiCf/SiC Composites Tested at High Temperature in Air by an Ablation Method

  • Park, Ji Yeon;Kim, Daejong;Lee, Hyeon-Geun;Kim, Weon-Ju;Pouchon, Manuel
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.5
    • /
    • pp.498-503
    • /
    • 2018
  • Using the thermal ablation method, the oxidation behavior of $SiC_f/SiC$ composites was investigated in air and in the temperature range of $1,300^{\circ}C$ to $2,000^{\circ}C$. At the relatively low temperature of $1,300^{\circ}C$, passive oxidation, which formed amorphous phase, predominantly occurred in the thermal ablation test. When the oxidation temperature increased, SiO (g) and CO (g) were formed by active oxidation and the dense oxide layer changed to a porous one by vaporization of gas phases. In the higher temperature oxidation test, both active oxidation due to $SiO_2$ decomposition on the surface of the oxide layer and active/passive oxidation transition due to interfacial reaction between oxide and base materials such as SiC fiber and matrix phase simultaneously occurred. This was another cause of high temperature degradation of $SiC_f/SiC$ composites.

Ceramic and stainless steel brazing by active filler metal (활성 용가재를 이용한 세라믹 및 스테인레스강의 접합)

  • 김원배;김숙환;권영각;장래웅;배석천
    • Journal of Welding and Joining
    • /
    • v.9 no.4
    • /
    • pp.17-27
    • /
    • 1991
  • The direct brazing technology which could be used for the simplification of brazing process and the improvement of brazed joint quality was studied with $Al_2O_3$ and stainless steels. The brazing of $Al_2O_3$ to STS304 or STS430 was performed under different brazing conditions such as brazing filler metal, temperature, heating rate and brazing time. Microstructural observation and chemical analysis be SEM/EPAM were carried out to verify the quality of brazed joints. 4-point bending strength of brazed joints was also measured to find the optimal brazing conditions. The results showed that, in brazing of $Al_2O_3$, the mixed oxide layer resulted from the reaction between Ti in filler metal and oxide layer on the material surface to be brazed was found to be bery important for the joint quality. The width of oxide layer varied with the brazing conditions such as brazing time, heating rate and chemical composition of filler metals. The strength of brazed joints was more affected by the type of materials and their thermal properties than by brazing heat cycle.

  • PDF

Design of Chlorine-resistant layer for stable electrode in seawater-based electrochemical devices (해수 기반 전기화학소자의 안정적인 전극을 위한 내염소층 설계)

  • Suyeon Kim;Aye Myint Myat Kyaw;Chaeun Kim;Yewon Jang;Youri Han;Li Oi Lun
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.4
    • /
    • pp.325-330
    • /
    • 2024
  • When seawater is used in electrochemical devices, issues arise such as the adsorption of chloride ions blocking the active sites for Oxygen reduction reactions (ORR) in seawater batteries, and the occurrence of Chlorine evolution reactions (ClER) in seawater electrolysis due to chloride anions (Cl-) competing with OH- for catalytic active sites, potentially slowing down Oxygen evolution reactions (OER). Consequently, the performance of components used in seawater battery and seawater electrolysis may deteriorate. Therefore, conventional alloys are often used by coating or plating methods to minimize corrosion, albeit at the cost of reducing electrical conductivity. This study thus designed a corrosion-resistant layer by doping carbon with Nitrogen (N) and Sulfur (S) to maintain electrical conductivity while preventing corrosion. Optimal N,S doping ratios were developed, with corrosion experiments confirming that N,S (10:90) carbon exhibited the best corrosion resistance performance.

Zn3(PO4)2 Protective Layer on Zn Anode for Improved Electro-chemical Properties in Aqueous Zn-ion Batteries

  • Chae-won Kim;Junghee Choi;Jin-Hyeok Choi;Ji-Youn Seo;Gumjae Park
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.162-173
    • /
    • 2023
  • Aqueous zinc-ion batteries are considered as promising alternatives to lithium-ion batteries for energy storage owing to their safety and cost efficiency. However, their lifespan is limited by the irreversibility of Zn anodes because of Zn dendrite growth and side reactions such as the hydrogen evolution reaction and corrosion during cycling. Herein, we present a strategy to restrict direct contact between the Zn anode and aqueous electrolyte by fabricating a protective layer on the surface of Zn foil via phosphidation method. The Zn3(PO4)2 protective layer effectively suppresses Zn dendrite growth and side reactions in aqueous electrolytes. The electrochemical properties of the Zn3(PO4)2@Zn anode, such as the overpotential, linear polarization resistance, and hydrogen generation reaction, indicate that the protective layer can suppress interfacial corrosion and improve the electrochemical stability compared to that of bare Zn by preventing direct contact between the electrolyte and the active sites of Zn. Remarkably, MnO2 Zn3(PO4)2@Zn exhibited enhanced reversibility owing to the formation a stable porous layer, which effectively inhibited vertical dendrite growth by inducing the uniform plating of Zn2+ ions underneath the formed layer.