• Title/Summary/Keyword: Active input current control

Search Result 128, Processing Time 0.045 seconds

A Design and Performance Evaluation of Semi-active MR Damper for the Smart Control of Construction Structures (건설구조물의 스마트 제어를 위한 준능동 MR 감쇠기의 설계 및 성능평가)

  • Heo, Gwang-Hee;Jeon, Joon-Ryong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.2 s.54
    • /
    • pp.165-171
    • /
    • 2009
  • This research developed two semi-active MR dampers whose gaps in the orifice area were different from each other, and evaluated their damping performance by loading tests. The Damping performance of MR dampers characteristically depends on various factors like their material and mechanical ones, but most importantly on the size of gap in the orifice area. For this research, we designed the orifice gaps of two dampers as each 1.0mm and 2.0mm, both with the 80mm outer diameter of the orifice. We also designed two loading test sets with different input currents, and acquired different control ability from them. The acquired test results were analyzed and evaluated with their maximum and minimum damping force and also their dynamic range from the force-displacement hysteresis loops and the force-input current relationship curve. This research clearly proved how the damping performance of control devices depends on the gap effect, and also presented a possibility that the two dampers developed in this research could be used for the smart control of construction structures by effectively adapting the input current and the number of coil turns.

PWM-based Integral Sliding-mode Controller for Unity Input Power Factor Operation of Indirect Matrix Converter

  • Rmili, Lazhar;Hamouda, Mahmoud;Rahmani, Salem;Blanchette, Handy Fortin;Al-Haddad, Kamal
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.1048-1057
    • /
    • 2017
  • An indirect matrix converter (IMC) is a modern power generation system that enables a direct ac/ac conversion without the need for any bulky and limited lifetime electrolytic capacitor. This system also allows four-quadrant operation, generation of sinusoidal output voltage waveforms with variable frequency and amplitude, and control of input power factor. This study proposes a pulse-width modulation-based sliding-mode controller to achieve unity input-power factor operation of the IMC independently of the active power exchanged with the grid, as well as a fast dynamic response. The designed equivalent control law determines, at each sampling period, the appropriate q-axis component of the modulated input current to be injected into the grid through the LC input filter. An integral term of the error is included in the expression of the sliding surface to increase the accuracy of the control method. A double space vector modulation method is used to synthesize the direction of the space vector of the input currents as required by the sliding-mode controller and the space vectors of the target output voltages. Simulation and experimental results are provided to show the effectiveness and evaluate the performance of the proposed control method.

Single Phase Active Rectifier with Power Factor Correction For Inverter Air-Conditioner (인버터 에어컨용 역률제어기능을 갖는 단상능동정류기)

  • 정용채;권경안
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.31-34
    • /
    • 1998
  • In this paper, a Single-phase Active Rectifier(SAR) with high power factor capability for inverter air-conditioner is adopted for satisfying the international standards of input current harmonics, IEC 1000-3-2. Comparing the conventional boost power factor correction circuit, one diode drop is reduced in the power flow path of the SAR circuit, so the system efficiency is improved. To apply the control IC, such as UC3854, ML4821 and so forth, to the SAR, the adequate sensing circuits are proposed. The design rules of passive components and two control loops are also presented. The prototype SAR circuit with 3㎾ power consumption is builted and tested to verify the operation of the proposed circuit.

  • PDF

Comparison of Two Reactive Power Definitions in DFIG Wind Power System under Grid Unbalanced Condition

  • Ha, Daesu;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2014.07a
    • /
    • pp.213-214
    • /
    • 2014
  • This paper compares two instantaneous reactive power definitions in DFIG wind turbine with a back-to-back three-level neutral-point clamped voltage source converter under unbalanced grid conditions. In general, conventional definition of instantaneous reactive power is obtained by taking an imaginary component of complex power. The other definition of instantaneous reactive power can be developed based on a set of voltages lagging the grid input voltages by 90 degree. A complex quantity referred as a quadrature complex power is defined. Proposed definition of instantaneous reactive power is derived by taking a real component of quadrature complex power. The characteristics of two instantaneous reactive power definitions are compared using the ripple-free stator active power control algorithm in DFIG. Instantaneous reactive power definition based on quadrature complex power has a simpler current reference calculation control block. Ripple of instantaneous active and reactive power has the same magnitude unlike in conventional definition under grid unbalance. Comparison results of two instantaneous reactive power definitions are verified through simulation.

  • PDF

A 6-bit 3.3GS/s Current-Steering DAC with Stacked Unit Cell Structure

  • Kim, Si-Nai;Kim, Wan;Lee, Chang-Kyo;Ryu, Seung-Tak
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.3
    • /
    • pp.270-277
    • /
    • 2012
  • This paper presents a new DAC design strategy to achieve a wideband dynamic linearity by increasing the bandwidth of the output impedance. In order to reduce the dominant parasitic capacitance of the conventional matrix structure, all the cells associated with a unit current source and its control are stacked in a single column very closely (stacked unit cell structure). To further reduce the parasitic capacitance, the size of the unit current source is considerably reduced at the sacrifice of matching yield. The degraded matching of the current sources is compensated for by a self-calibration. A prototype 6-bit 3.3-GS/s current-steering full binary DAC was fabricated in a 1P9M 90 nm CMOS process. The DAC shows an SFDR of 36.4 dB at 3.3 GS/s Nyquist input signal. The active area of the DAC occupies only $0.0546mm^2$ (0.21 mm ${\times}$ 0.26 mm).

Design and Verification of the Hardware Architecture for the Active Seat Belt Control System Compliant to ISO 26262 (ISO 26262에 부합한 능동형 안전벨트 제어 시스템의 하드웨어 아키텍처 설계 및 검증)

  • Lee, Jun Hyok;Koag, Hyun Chul;Lee, Kyung-Jung;Ahn, Hyun-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2030-2036
    • /
    • 2016
  • This paper presents a hardware development procedure of the ASB(Active Seat Belt) control system to comply with ISO 26262. The ASIL(Automotive Safety Integrity Level) of an ASB system is determined through the HARA(Hazard Analysis and Risk Assessment) and the safety mechanism is applied to meet the reqired ASIL. The hardware architecture of the controller consists of a microcontroller, H-bridge circuits, passive components, and current sensors which are used for the input comparison. The required ASIL for the control systems is shown to be satisfied with the safety mechanism by calculation of the SPFM(Single Point Fault Metric) and the LFM(Latent Fault Metric) for the design circuits.

Vibration Control of an Axially Moving String: Inclusion of the Dynamics of Electro Hydraulic Servo System

  • Kim, Chang-Won;Hong, Keum-Shik;Kim, Yong-Shik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.342-347
    • /
    • 2003
  • In this paper, an active vibration control of a translating tensioned string with the use of an electro-hydraulic servo mechanism at the right boundary is investigated. The dynamics of the moving strip is modeled as a string with tension by using Hamilton’s principle for the systems with changing mass. The control objective is to suppress the transverse vibrations of the strip via boundary control. A right boundary control law in the form of current input to the servo valve based upon the Lyapunov’s second method is derived. It is revealed that a time-varying boundary force and a suitable passive damping at the right boundary can successfully suppress the transverse vibrations. The exponential stability of the closed loop system is proved. The effectiveness of the control laws proposed is demonstrated via simulations.

  • PDF

Analysis and Implementation of LC Series Resonant Converter with Secondary Side Clamp Diodes under DCM Operation for High Step-Up Applications

  • Jia, Pengyu;Yuan, Yiqin
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.363-379
    • /
    • 2019
  • Resonant converters have attracted a lot of attention because of their high efficiency due to the soft-switching performance. An isolated high step-up converter with secondary-side resonant loops is proposed and analyzed in this paper. By placing the resonant loops on the secondary side, the current stress for the resonant capacitors is greatly reduced. The power loss caused by the equivalent series resistance of the resonant capacitor is also decreased. Clamp diodes in parallel with the resonant capacitors ensure a unique discontinuous current mode in the converter. Under this mode, the active switches can realize soft-switching during both turn-on and turn-off transitions. Meanwhile, the reverse-recovery problems of diodes are also alleviated by the leakage inductor. The converter is essentially a step-up converter. Therefore, it is helpful for decreasing the transformer turn-ratio when it is applied as a high step-up converter. The steady-state operation principle is analyzed in detail and design considerations are presented in this paper. Theoretical conclusions are verified by experimental results obtained from a 500W prototype with a 35V-42V input and a 400V output.

Compensation of Unbalanced PCC Voltage in an Off-shore Wind Farm of PMSG Type Turbines (해상풍력단지에서의 PMSG 풍력발전기를 활용한 계통연계점 불평형 전원 보상)

  • Kang, Ja-Yoon;Han, Dae-Su;Suh, Yong-Sug;Jung, Byoung-Chang;Kim, Jeong-Joong;Park, Jong-Hyung;Choi, Young-Joon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • This paper proposes a control algorithm for permanent magnet synchronous generators with a back-to-back three-level neutral-point clamped voltage source converter in a medium-voltage off-shore wind power system under unbalanced grid conditions. Specifically, the proposed control algorithm compensates for unbalanced grid voltage at the PCC (Point of Common Coupling) in a collector bus of an off-shore wind power system. This control algorithm has been formulated based on symmetrical components in positive and negative synchronous rotating reference frames under generalized unbalanced operating conditions. Instantaneous active and reactive power is described in terms of symmetrical components of measured grid input voltages and currents. Negative sequential component of AC input current is injected into the PCC in the proposed control strategy. The amplitude of negative sequential component is calculated to minimize the negative sequential component of grid voltage under the limitation of current capability in a voltage source converter. The proposed control algorithm enables the provision of balanced voltage at the PCC resulting in the high quality generated power from off-shore wind power systems under unbalanced network conditions.

A Novel Prototype of Duty Cycle Controlled Soft-Switching Half-Bridge DC-DC Converter with Input DC Rail Active Quasi Resonant Snubbers Assisted by High Frequency Planar Transformer

  • Fathy, Khairy;Morimoto, Keiki;Suh, Ki-Young;Kwon, Soon-Kurl;Nakaoka, Mutsuo
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.89-97
    • /
    • 2007
  • This paper presents a new circuit topology of active edge resonant snubbers assisted half-bridge soft switching PWM inverter type DC-DC high power converter for DC bus feeding power plants. The proposed DC-DC power converter is composed of a typical voltage source-fed half-bridge high frequency PWM inverter with a high frequency planar transformer link in addition to input DC busline side power semiconductor switching devices for PWM control scheme and parallel capacitive lossless snubbers. The operating principle of the new DC-DC converter treated here is described by using switching mode equivalent circuits, together with its unique features. All the active power switches in the half-bridge arms and input DC buslines can achieve ZCS turn-on and ZVS turn-off commutation transitions. The total turn-off switching losses of the power switches can be significantly reduced. As a result, a high switching frequency IGBTs can be actually selected in the frequency range of 60 kHz under the principle of soft switching. The performance evaluations of the experimental setup are illustrated practically. The effectiveness of this new converter topology is proved for such low voltage and large current DC-DC power supplies as DC bus feeding from a practical point of view.