• Title/Summary/Keyword: Active front end

Search Result 72, Processing Time 0.02 seconds

Study on Front-End Receiver for S-band Active Phased Array Radar (S-대역 능동위상배열레이더용 수신전단기 연구)

  • Kim, Min-Chul;Kim, Wan-Sik;Park, Sang-Hyun;Jeong, Myeong-Deuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.825-832
    • /
    • 2011
  • In this paper, we described the design and measurement results of a Front-End Receiver for S-band active phased array radar. The Front-End Receiver has input P1dB of -4dBm and IIP3 of 7dBm. The measurement results show that gain is $24{\pm}0.7dB$, noise figure are less than 2.3dB over the frequency range of $fc{\pm}0.2GHz$. The Front-End Receiver can protect the receiver path from large input signals with a maximum peak power of multi-kW and recovery time is less than 0.8us. The measurement results satisfy all specifications.

Three-phase Three-level Boost-type Front-end PFC Rectifier for Improving Power Quality at Input AC Mains of Telecom Loads

  • Saravana, Prakash P.;Kalpana, R.;Singh, Bhim
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1819-1829
    • /
    • 2018
  • A three-phase, three-switch, and three-level boost-type PWM rectifier (Vienna rectifier) is proposed as an active front-end power factor correction (PFC) rectifier for telecom loads. The proposed active front-end PFC rectifier system is modeled by the switching cycle average model. The relation between duty ratios and DC link capacitor voltages is derived in terms of the system input currents. Furthermore, the feasible switching states are identified and applied to the proposed system to reduce the switching stress and DC ripples. A detailed equivalent circuit analysis of the proposed front-end PFC rectifier is conducted, and its performance is verified through simulations in MATLAB. Simulation results are verified using an experimental setup of an active front-end PFC rectifier that was developed in the laboratory. Simulation and experimental results demonstrate the improved power quality parameters that are in accordance with the IEEE and IEC standards.

Stability and Performance Investigations of Model Predictive Controlled Active-Front-End (AFE) Rectifiers for Energy Storage Systems

  • Akter, Md. Parvez;Mekhilef, Saad;Tan, Nadia Mei Lin;Akagi, Hirofumi
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.202-215
    • /
    • 2015
  • This paper investigates the stability and performance of model predictive controlled active-front-end (AFE) rectifiers for energy storage systems, which has been increasingly applied in power distribution sectors and in renewable energy sources to ensure an uninterruptable power supply. The model predictive control (MPC) algorithm utilizes the discrete behavior of power converters to determine appropriate switching states by defining a cost function. The stability of the MPC algorithm is analyzed with the discrete z-domain response and the nonlinear simulation model. The results confirms that the control method of the active-front-end (AFE) rectifier is stable, and that is operates with an infinite gain margin and a very fast dynamic response. Moreover, the performance of the MPC controlled AFE rectifier is verified with a 3.0 kW experimental system. This shows that the MPC controlled AFE rectifier operates with a unity power factor, an acceptable THD (4.0 %) level for the input current and a very low DC voltage ripple. Finally, an efficiency comparison is performed between the MPC and the VOC-based PWM controllers for AFE rectifiers. This comparison demonstrates the effectiveness of the MPC controller.

A 0.13 ㎛ CMOS Dual Mode RF Front-end for Active and Passive Antenna (능·수동 듀얼(Dual) 모드 GPS 안테나를 위한 0.13㎛ CMOS 고주파 프론트-엔드(RF Front-end))

  • Jung, Cheun-Sik;Lee, Seung-Min;Kim, Young-Jin
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.1
    • /
    • pp.48-53
    • /
    • 2009
  • The CMOS RF front-end for Global Positioning System(GPS)are implemented in 1P8M CMOS $0.13{\mu}m$ process. The LNAs consist of LNA1 with high gain and low NF, and LNA2 with low gain and high IIP3 for supporting operation with active and passive antenna. the measured performances of both LNAs are 16.4/13.8 dB gain, 1.4/1.68 dB NF, and -8/-4.4 dBm IIP3 with 3.2/2 mA form 1.2 V supply, respectively. The quadrature downconversion mixer is followed by transimpedance amplifier with gain controllability from 27.5 to 41 dB. The front-end performances in LNA1 mode are 39.8 dB conversion gain, 2.2 dB NF, and -33.4 dBm IIP3 with 6.6 mW power consumption.

  • PDF

PI Controlled Active Front End Super-Lift Converter with Ripple Free DC Link for Three Phase Induction Motor Drives

  • Elangovan, P.;Mohanty, Nalin Kant
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.190-204
    • /
    • 2016
  • An active front end (AFE) is required for a three-phase induction motor (IM) fed by a voltage source inverter (VSI), because of the increasing need to derive quality current from the utility end without sacrificing the power factor (PF). This study investigates a proportional-plus-integral (PI) controller based AFE topology that uses a super-lift converter (SLC). The significance of the proposed SLC, which converts rectified AC supply to geometrically proceed ripple-free DC supply, is explained. Variations in several power quality parameters in the intended IM drive for 0% and 100% loading conditions are demonstrated. A simulation is conducted by using MATLAB/Simulink software, and a prototype is built with a field programmable gate array (FPGA) Spartan-6 processor. Simulation results are correlated with the experimental results obtained from a 0.5 HP IM drive prototype with speed feedback and a voltage/frequency (V/f) control strategy. The proposed AFE topology using SLC is suitable for three-phase IM drives, considering the supply end PF, the DC-link voltage and current, the total harmonic distortion (THD) in supply current, and the speed response of IM.

Active Front End Inverter with Quasi - resonance

  • Siebel, Henrik;Pacas, J.M.
    • Journal of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.17-23
    • /
    • 2003
  • A new three-phase soft-switching active front-end inverter is presented. The topology consists of a quasi-resonant PWM boost converter with an additional resonant branch, which provides low loss at high frequency operation. This leads to a high conversion efficiency and a remarkable reduction in the siBe of the input inductor. To synchronise the PWM pattern with the resonance cycle, a modified space vector modulation with asymmetrical PWM pattern is used. A high power factor can be achieved for both power flow directions. Due to a new control strategy the converter features a low content of harmonics in the line currents even for distorted line voltages.

Active front end inverter with quasi - resonance

  • Siebel H.;Pacas J. M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.146-150
    • /
    • 2001
  • A new three-phase soft-switching active front-end inverter is presented. The topology consists of a quasi-resonant PWM boost converter with an additional resonant branch, which provides low loss at high frequency operation. This leads to a high conversion efficiency and a remarkable reduction in the size of the input inductor. To synchronise the PWM pattern with the resonance cycle, a modified space vector modulation with asymmetrical PWM pattern is used. A high power factor can be achieved for both power flow directions. Due to a new control strategy the converter features a low content of harmonics in the line currents even for distorted line voltages.

  • PDF

Classification and Analysis of Switched Reluctance Converters

  • Ahn, Jin-Woo;Liang, Jianing;Lee, Dong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.571-579
    • /
    • 2010
  • This paper reviews and analyzes converters for SRM(Switched Reluctance Motor) drive. Conventional classification focuses on the number of power switches and diodes. It is easy to find the number of semiconductors and the cost by counting the number of active components, but it does not show the important characteristics of a power converter. The voltage ratings for the power switches and diodes are also difficult to identify. This paper proposes a switched reluctance (SR) converter configuration that is classified based on the commutation type and magnetic energy path. The converter has three parts: utility interface, front-end circuit, and power converter. Based on the overview on the conventional SR drive, the most important characteristic of the converter is determined by the topology of front-end in conjunction with the power converter. An SR converter has two parts: front-end and power converter. Inasmuch as the capacitive front-end is widely used for voltage source converters, this paper focuses on topologies for the front-end.

A Novel RF Active Bandpass Filter with Low Noise Performance (저잡음 특성을 갖는 새로운 RF 능동 대역통과 여파기)

  • 이재룡;윤상원
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.8
    • /
    • pp.748-753
    • /
    • 2002
  • In this paper, a new topology of a active capacitor is proposed in order to apply the resonator in the design of RF active bandpass filters. Through the noise analysis of the active capacitor, the optimized low noise design process is also presented, Due to the low noise performance of the proposed active bandpass filter, it can be used in the RF front-end of the receivers. In designed 2-stage active bandpass filter at 1.9 GHz shows insertion loss of 0 dB, noise figure of 2.6 dB, and OIP3 of 8 dBm.

Dynamic Range Improvement of Digital Receiver (디지털 수신기의 Dynamic Range 개선방안)

  • Hwang, Hee-Geun;Rhee, Young-Chul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.2
    • /
    • pp.61-67
    • /
    • 2012
  • In this paper, In this paper, we consider a dynamic range in the frequency converter to obtain a high conversion gain and linearity while operating area proposed to broaden the design. Super-heterodyne RF Front-End style was applied to the active mixer stage, GaAs devices were used. Circuit design easy and simple forms benefit circuit is constructed in the drain mixer, passive mixer with the operating area were compared and analyzed. The simulation results of the conversion gain of 2.4dB and 0.2dBm about a gain-compression point, and showed the dynamic range of 71.9dB, when compared with passive mixers, dynamic range of approximately 6dB improvement was identified. Measurements of an approximately 2dB conversion gain and-1.0dBm of the gain-compression point, and confirmed that the active area of 71.1dB. When compared with passive mixers, dynamic range of is reduced by approximately 8dB has been improved.