• Title/Summary/Keyword: Active contour model

Search Result 163, Processing Time 0.025 seconds

Active Fusion Model with Robustness against Partial Occlusions (부분적 폐색에 강건한 활동적 퓨전 모델)

  • Lee Joong-Jae;Lee Geun-Soo;Kim Gye-Young
    • The KIPS Transactions:PartB
    • /
    • v.13B no.1 s.104
    • /
    • pp.35-46
    • /
    • 2006
  • The dynamic change of background and moving objects is an important factor which causes the problem of occlusion in tracking moving objects. The tracking accuracy is also remarkably decreased in the presence of occlusion. We therefore propose an active fusion model which is robust against partial occlusions that are occurred by background and other objects. The active fusion model is consisted of contour-based md region-based snake. The former is a conventional snake model using contour features of a moving object and the latter is a regional snake model which considers region features inside its boundary. First, this model classifies total occlusion into contour and region occlusion. And then it adjusts the confidence of each model based on calculating the location and amount of occlusion, so it can overcome the problem of occlusion. Experimental results show that the proposed method can successfully track a moving object but the previous methods fail to track it under partial occlusion.

Mobile Robot Control using Hand Shape Recognition (손 모양 인식을 이용한 모바일 로봇제어)

  • Kim, Young-Rae;Kim, Eun-Yi;Chang, Jae-Sik;Park, Se-Hyun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.4
    • /
    • pp.34-40
    • /
    • 2008
  • This paper presents a vision based walking robot control system using hand shape recognition. To recognize hand shapes, the accurate hand boundary needs to be tracked in image obtained from moving camera. For this, we use an active contour model-based tracking approach with mean shift which reduces dependency of the active contour model to location of initial curve. The proposed system is composed of four modules: a hand detector, a hand tracker, a hand shape recognizer and a robot controller. The hand detector detects a skin color region, which has a specific shape, as hand in an image. Then, the hand tracking is performed using an active contour model with mean shift. Thereafter the hand shape recognition is performed using Hue moments. To assess the validity of the proposed system we tested the proposed system to a walking robot, RCB-1. The experimental results show the effectiveness of the proposed system.

A Verification of the Accuracy of the Deformable Model in 3 Dimensional Vessel Surface Reconstruction (혈관표면의 3차원 재구성을 위한 Deformable model의 정확성 검증에 관한 연구)

  • Kim, H.C.;Oh, J.S.;Kim, H.R.;Cho, S.B.;Sun, K.;Kim, M.G.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.3-5
    • /
    • 2005
  • Vessel boundary detection and modeling is a difficult but a necessary task in analyzing the mechanics of inflammation and the structure of the microvasculature. In this paper we present a method of analyzing the structure by means of an active contour model(using GVF Snake) for vessel boundary detection and 3D reconstruction. For this purpose we used a virtual vessel model and produced a phantom model. From these phantom images we obtained the contours of the vessel by GVF Snake and then reconstructed a 3D structure by using the coordinates of snakes.

  • PDF

Compar ison of Level Set-based Active Contour Models on Subcor tical Image Segmentation

  • Vongphachanh, Bouasone;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.7
    • /
    • pp.827-833
    • /
    • 2015
  • In this paper, we have compared three level set-based active contour (LSAC) methods on inhomogeneous MR image segmentation which is known as an important role of brain diseases to diagnosis and treatment in early. MR image is often occurred a problem with similar intensities and weak boundaries which have been causing many segmentation methods. However, LSAC method could be able to segment the targets such as the level set based on the local image fitting energy, the local binary fitting energy, and local Gaussian distribution fitting energy. Our implemented and tested the subcortical image segmentations were the corpus callosum and hippocampus and finally demonstrated their effectiveness. Consequently, the level set based on local Gaussian distribution fitting energy has obtained the best model to accurate and robust for the subcortical image segmentation.

Digital Endoscopic Image Segmentation using Deformable Models

  • Yoon, Sung-Won;Kim, Jeong-Hoon;Lee, Myoung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.57.4-57
    • /
    • 2002
  • $\textbullet$ Image segmentation is an essential technique of image analysis. In spite of the traditional issues in contour initialization and boundary concavities, active contour models(snakes) are popular and known as successful methods for segmentation. $\textbullet$ We could find in experiment that snake using Gaussian External Force is fast in time but low in accuracy and snake using Gradient Vector Flow by Chenyang Xu and Jerry L. Prince is high in accuracy but slow in time. $\textbullet$ In this paper, we presented a new active contour model, GGF snake, for segmentation of endoscopic image. Proposed GGF snake made up for the defects of the traditional snakes in contour initialization and boundary...

  • PDF

An Initialization of Active Contour Models(Snakes) using Convex Hull Approximation

  • Kwak, Young-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.753-762
    • /
    • 2006
  • The Snakes and GVF used to find object edges dynamically have assigned their initial contour arbitrarily. If the initial contours are located in the neighboring regions of object edges, Snakes and GVF can be close to the true boundary. If not, these will likely to converge to the wrong result. Therefore, this paper proposes a new initialization of Snakes and GVF using convex hull approximation, which initializes the vertex of Snakes and GVF as a convex polygonal contour near object edges. In simulation result, we show that the proposed algorithm has a faster convergence to object edges than the existing methods. Our algorithm also has the advantage of extracting whole edges in real images.

  • PDF

Object Contour Extraction Algorithm Combined Snake with Level Set (스네이크와 레벨 셋 방법을 결합한 개체 윤곽 추출 알고리즘)

  • Hwang, JaeYong;Wu, Yingjun;Jang, JongWhan
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.5
    • /
    • pp.195-200
    • /
    • 2014
  • Typical methods of active contour model for object contour extraction are snake and level. Snake is usually faster than level set, but has limitation to compute topology of objects. Level set on the other hand is slower but good at it. In this paper, a new object contour extraction algorithm to use advantage of each is proposed. The algorithm is composed of two main steps. In the first step, snake is used to extract the rough contour and then in the second step, level set is applied to extract the complex contour exactly. 5 binary images and 2 natural images with different contours are simulated by a proposed algorithm. It is shown that speed is reduced and contour is better extracted.

Color Object Segmentation using Distance Regularized Level Set (거리정규화 레벨셋을 이용한 칼라객체분할)

  • Anh, Nguyen Tran Lan;Lee, Guee-Sang
    • Journal of Internet Computing and Services
    • /
    • v.13 no.4
    • /
    • pp.53-62
    • /
    • 2012
  • Object segmentation is a demanding research area and not a trivial problem of image processing and computer vision. Tremendous segmentation algorithms were addressed on gray-scale (or biomedical) images that rely on numerous image features as well as their strategies. These works in practice cannot apply to natural color images because of their negative effects to color values due to the use of gray-scale gradient information. In this paper, we proposed a new approach for color object segmentation by modifying a geometric active contour model named distance regularized level set evolution (DRLSE). Its speed function will be designed to exploit as much as possible color gradient information of images. Finally, we provide experiments to show performance of our method with respect to its accuracy and time efficiency using various color images.

Face detection using active contours

  • Chang, Jae-Sik;Lee, Mu-Youl;Moon, Chae-Hyun;Park, Hye-Sun;Lee, Kyung-Mi;Kim, Hang-Joon
    • Proceedings of the IEEK Conference
    • /
    • 2002.07c
    • /
    • pp.1515-1518
    • /
    • 2002
  • This paper proposes an active contour model to detect facial regions in a given image. Accordingly we use the color information human faces which is represented by a skin color model. We evolve the active contour using the level set method which allows for cusps, corners, and automatic topological changes. Experimental results show the effectiveness of the proposed method.

  • PDF

Detection of Pulmonary Region in Medical Images through Improved Active Control Model

  • Kwon Yong-Jun;Won Chul-Ho;Kim Dong-Hun;Kim Pil-Un;Park Il-Yong;Park Hee-Jun;Lee Jyung-Hyun;Kim Myoung-Nam;Cho Jin-HO
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.6
    • /
    • pp.357-363
    • /
    • 2005
  • Active contour models have been extensively used to segment, match, and track objects of interest in computer vision and image processing applications, particularly to locate object boundaries. With conventional methods an object boundary can be extracted by controlling the internal energy and external energy based on energy minimization. However, this still leaves a number of problems, such as initialization and poor convergence in concave regions. In particular, a contour is unable to enter a concave region based on the stretching and bending characteristic of the internal energy. Therefore, this study proposes a method that controls the internal energy by moving the local perpendicular bisector point of each control point on the contour, and determines the object boundary by minimizing the energy relative to the external energy. Convergence at a concave region can then be effectively implemented as regards the feature of interest using the internal energy, plus several objects can be detected using a multi-detection method based on the initial contour. The proposed method is compared with other conventional methods through objective validation and subjective consideration. As a result, it is anticipated that the proposed method can be efficiently applied to the detection of the pulmonary parenchyma region in medical images.