• Title/Summary/Keyword: Active chemical

Search Result 2,296, Processing Time 0.033 seconds

Formation and Dissociation Kinetics of Zinc(II) Complexes of Tetraaza-Crown-Alkanoic Acids (Zinc(Ⅱ) Tetraaza-Crown-Allkanoic Acids 착물의 형성 및 해리 반응속도론)

  • Choi, Ki Young;Kim, Dong Won;Kim, Chang Suk;Park, Byung Bin;Choi, Suk Nam;Hong, Choon Pyo;Ryu, Hae Il
    • Journal of the Korean Chemical Society
    • /
    • v.44 no.5
    • /
    • pp.403-409
    • /
    • 2000
  • The formation and dissociation rates of $Zn^{2+}$ Complexes with l,4,7,10-tetraaza-13,16-diox-acyclooctadecane-N,N',N",N'"-tetraacetic acid (1), 1,4,7,10-tetraaza-13,16- dioxacyclooctadecane-N,N',N",N'"-tetramethylacetic acid (2), and 1,4,7,10-tetraaza-13,16- dioxacyclooctadecane-N,N',N",N'"-tetrapropionic acid(3) have been measured by stopped-flow and conventional spectrophotometry. Observations were made at 25.0$\pm$0.1 $^{\circ}C$ and at an ionic strength of 0.10 M NaClO$_4$. The formation reactions of $Zn^{2+}$ ion with 1 and 2 took place by the rapid formation of an intermediate complex (ZnH$_3L^+$) in which the $Zn^{2+}$ ion is incompletely coor-dinated. This might then lead to be a final product in the rate-determining step.ln the pH range 4.76-5.76, the diprotonated (H2L2-) form is the kinetically active species despite of its low concentration. The stability con-stants (log$K_{(ZnH$_3$3$L^+$)}$) and specific water-assisted rate constants (koH) of intermediate complexes have been deter-mined from the kinetic data. The dissociation reactions of $Zn^{2+}$ complexes of 1,2, and 3 were investigated with $Cu^{2+}$ ions as a scavenger in acetate buffer. All complexes exhibit acid-independent and acid-catalyzed con-tributions. The effect of buffer and $Cu^{2+}$ concentration on the dissociation rate has also been investigated. The ligand effect on t dissociation rate of $Zn^{2+}$ complexes is discussed in terms of the side-pendant armsand the chelate ring sizes of the ligands.

  • PDF

Electrochemical Characteristics of Cu3Si as Negative Electrode for Lithium Secondary Batteries at Elevated Temperatures (리튬 이차전지 음극용 Cu3Si의 고온에서의 전기화학적 특성)

  • Kwon, Ji-Y.;Ryu, Ji-Heon;Kim, Jun-Ho;Chae, Oh-B.;Oh, Seung-M.
    • Journal of the Korean Electrochemical Society
    • /
    • v.13 no.2
    • /
    • pp.116-122
    • /
    • 2010
  • A $Cu_3Si$ film electrode is obtained by Si deposition on a Cu foil using DC magnetron sputtering, which is followed by annealing at $800^{\circ}C$ for 10 h. The Si component in $Cu_3Si$ is inactive for lithiation at ambient temperature. The linear sweep thermammetry (LSTA) and galvano-static charge/discharge cycling, however, consistently illustrate that $Cu_3Si$ becomes active for the conversion-type lithiation reaction at elevated temperatures (> $85^{\circ}C$). The $Cu_3Si$ electrode that is short-circuited with Li metal for one week is converted to a mixture of $Li_{21}Si_5$ and metallic Cu, implying that the Li-Si alloy phase generated at 0.0 V (vs. Li/$Li^+$) at the quasi-equilibrium condition is the most Li-rich $Li_{21}Si_5$. However, the lithiation is not extended to this phase in the constant-current charging (transient or dynamic condition). Upon de-lithiation, the metallic Cu and Si react to be restored back to $Cu_3Si$. The $Cu_3Si$ electrode shows a better cycle performance than an amorphous Si electrode at $120^{\circ}C$, which can be ascribed to the favorable roles provided by the Cu component in $Cu_3Si$. The inactive element (Cu) plays as a buffer against the volume change of Si component, which can minimize the electrode failure by suppressing the detachment of Si from the Cu substrate.

The Effect of Vanadium(V) Oxide Content of V2O5-WO3/TiO2 Catalyst on the Nitrogen Oxides Reduction and N2O Formation (질소산화물 환원과 N2O 생성에 있어서 V2O5-WO3/TiO2 촉매의 V2O5 함량 영향)

  • Kim, Jin-Hyung;Choi, Joo-Hong
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.313-318
    • /
    • 2013
  • In order to investigate the effect of $V_2O_5$ loading of $V_2O_5-WO_3/TiO_2$ catalyst on the NO reduction and the formation of $N_2O$, the experimental study was carried out in a differential reactor using the powder catalyst. The NO reduction and the ammonia oxidation were, respectively, investigated over the catalysts compose of $V_2O_5$ content (1~8 wt%) based on the fixed composition of $WO_3$ (9 wt%) on $TiO_2$ powder. $V_2O_5-WO_3/TiO_2$ catalysts had the NO reduction activity even under the temperature of $200^{\circ}C$. However, the lowest temperature for NO reduction activity more than 99.9% to treat NO concentration of 700 ppm appeared at 340 with very limited temperature window in the case of 1 wt% $V_2O_5$ catalyst. And the temperature shifted to lower one as well as the temperature window was widen as the $V_2O_5$ content of the catalyst increased, and finally reached at the activation temperature ranged $220{\sim}340^{\circ}C$ in the case of 6 wt% $V_2O_5$ catalyst. The catalyst of 8 wt% $V_2O_5$ content presented lower activity than that of 8 wt% $V_2O_5$ content over the full temperature range. NO reduction activity decreased as the $V_2O_5$ content of the catalyst increased above $340^{\circ}C$. The active site for NO reduction over $V_2O_5-WO_3/TiO_2$ catalysts was mainly related with $V_2O_5$ particles sustained as the bare surface with relevant size which should be not so large to stimulate $N_2O$ formation at high temperature over $320^{\circ}C$ according to the ammonia oxidation. Currently, $V_2O_5-WO_3/TiO_2$ catalysts were operated in the temperature ranged $350{\sim}450^{\circ}C$ to treat NOx in the effluent gas of industrial plants. However, in order to save the energy and to reduce the secondary pollutant $N_2O$ in the high temperature process, the using of $V_2O_5-WO_3/TiO_2$ catalyst of content $V_2O_5$ was recommended as the low temperature catalyst which was suitable for low temperature operation ranged $250{\sim}320^{\circ}C$.

Physical Property Analysis of Composite Electrodes with Different Active Material Sizes and Densities using 3D Structural Modeling (3차원 구조 모델링을 이용한 활물질 입자 크기 및 전극 밀도에 따른 복합 전극 내 물리적 특성 분석)

  • Yang, Seungwon;Park, Joonam;Byun, Seoungwoo;Kim, Nayeon;Ryou, Myung-Hyun;Lee, Yong Min
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.2
    • /
    • pp.39-46
    • /
    • 2020
  • Composite electrodes for rechargeable batteries generally consist of active material, electric conductor, and polymeric binder. And their composition and distribution within the composite electrode determine the electrochemical activity in the electrochemical systems. However, it is not easy to quantify the physical properties of composite electrodes themselves using conventional experimental analysis tools. So, 3D structural modeling and simulation can be an efficient design tool by looking into the contact areas between particles and electric conductivity within the composite electrode. In this study, while maintaining the composition (LiCoO2 : Super P Li® : Polyvinylidene Fluoride (PVdF) = 93 : 3 : 4 by wt%) and loading level (13 mg cm-2) of the composite electrode, the effects of LiCoO2 size (10 ㎛ and 20 ㎛) and electrode density (2.8 g cm-3, 3.0 g cm-3, 3.2 g cm-3, 3.5 g cm-3, 4.0 g cm-3) on the physical properties are investigated using a GeoDict software. With this tool, the composite electrode can be efficiently designed to optimize the contact area and electric conductivity.

A Study on the Analysis of Functional Components and Antioxidative Activity in Mulberry (Morus alba) Silage (뽕나무(Morus alba) 사일리지의 기능성 성분 및 항산화 활성 분석에 관한 연구)

  • Jeon, Byong-Tae;Kim, Yeong-Kyu;Lee, Sang-Moo;Park, Jae-Hyun;Sung, Si-Heung;Park, Pyo-Jam;Kim, Sung-Jin;Moon, Sang-Ho
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.29 no.3
    • /
    • pp.263-268
    • /
    • 2009
  • This study was conducted to determine application possibility of mulberry (Morus alba) silage as a functional feed in feeding management of Korean native cattle for high quality beef production by analysing active components and antioxidative activity. The chemical analysis of mulberry silage indicates that the content of dry matter, crude protein, ether extract, crude fiber and crude ash was $28.41{\pm}3.12%,\;12.43{\pm}0.28%,\;2.47{\pm}0.18%,\;20.29{\pm}0.75%\;and\;6.98{\pm}0.12%$, respectively. The content of 1-deoxynojirimycin (1-DNJ), which is representative active ingredient of mulberry and blood sugar descending component, was 0.568 mg/g and the content of $\gamma$-Aminobutyric acid (GABA), which is blood pressure descending component, was 5,936.22 pmol. Mulberry silage used in this study did not contain flavonoids but did contain total phenols for 21.69 ${\mu}g/mg$. 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity was increased with increasing the concentration of mulberry silage extracts and there was above 50% of scavenging activity at the concentration of 0.25 mg/ml. Hydroxyl radical scavenging activity was also increased with increasing the concentration of silage extracts. Alkyl radical scavenging activity was high at the low concentration of silage extracts, which was above 50% of scavenging activity at the concentration of 0.125 mg/ml. The result of this study indicated that there was high possibility of mulberry silage as a functional feed for beef cattle.

Inhibitory Effect of Hot-Water Extract of Paeonia japonica on Oxidative Stress and Identification of Its Active Components (백작약 열수추출물의 산화적 스트레스 억제효과 및 유효성분 동정)

  • Jeong, Ill-Yun;Lee, Joo-Sang;Oh, Heon;Jung, U-Hee;Park, Hae-Ran;Jo, Sung-Kee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.5
    • /
    • pp.739-744
    • /
    • 2003
  • This study was carried out to investigate the antioxidative activity and to identify the active components of hot-water extract of Paeoniajaponica (PJ), which was a main ingredient of a herb mixture preparation recently established as a potent candidate of radioprotector in our laboratory. The water extract was fractionated with CHCl$_3$, EtOAc and n-BuOH. The extract and its fractions showed very low activity in hydroxyl radical scavenging test. In lipid peroxidation test, the extract, EtOAc and water fractions showed moderate inhibition with the ratio above 50%. In DPPH radical scavenging test, the extract, EtOAc and water fraction showed high activity with the ratio above 80%, especially. EtOAc fraction scavenged the radicals as much as synthetic antioxidant (BHA), even at low concentration. It is suggested that mai or partition for antioxidative activity of Paeonia japonica was EtOAc fraction. Subsequently, two active compounds (PJE021-1 and JE024-1) from EtOAc fraction were isolated by using MCI gel and silica gel column chromatography The two compounds inhibited remarkedly the $H_2O$$_2$-induced DNA damage in human peripheral blood lymphocytes, measured by single-cell gel electrophoresis (SCGE). PJE021-1 protected the cells to almost negative control level, dose-dependently. PJE024-1 exhibited a potent inhibition with the ratio of 71% at even low concentration (0.5 $\mu\textrm{g}$/$m\ell$). Finally, their chemical structures were identified as gallic acid (PJE021-1) and (+)-catechin (PJE024-1), respectively, on the basis of the speculation of spectral and physical data.

An International Collaborative Program To Discover New Drugs from Tropical Biodiversity of Vietnam and Laos

  • Soejarto, Djaja D.;Pezzuto, John M.;Fong, Harry H.S.;Tan, Ghee Teng;Zhang, Hong Jie;Tamez, Pamela;Aydogmus, Zeynep;Chien, Nguyen Quyet;Franzblau, Scott G.;Gyllenhaal, Charlotte;Regalado, Jacinto C.;Hung, Nguyen Van;Hoang, Vu Dinh;Hiep, Nguyen Tien;Xuan, Le Thi;Hai, Nong Van;Cuong, Nguyen Manh;Bich, Truong Quang;Loc, Phan Ke;Vu, Bui Minh;Southavong, Boun Hoong
    • Natural Product Sciences
    • /
    • v.8 no.1
    • /
    • pp.1-15
    • /
    • 2002
  • An International Cooperative Biodiversity Group (ICBG) program based at the University of Illinois at Chicago initiated its activities in 1998, with the following specific objectives: (a) inventory and conservation of of plants of Cuc Phuong National Park in Vietnam and of medicinal plants of Laos; (b) drug discovery (and development) based on plants of Vietnam and Laos; and (c) economic development of communities participating in the ICBG project both in Vietnam and Laos. Member-institutions and an industrial partner of this ICBG are bound by a Memorandum of Agreement that recognizes property and intellectual property rights, prior informed consent for access to genetic resources and to indigenous knowledge, the sharing of benefits that may arise from the drug discovery effort, and the provision of short-term and long-term benefits to host country institutions and communities. The drug discovery effort is targeted to the search for agents for therapies against malaria (antimalarial assay of plant extracts, using Plasmodium falciparum clones), AIDS (anti-HIV-l activity using HOG.R5 reporter cell line (through transactivation of the green fluorescent protein/GFP gene), cancer (screening of plant extracts in 6 human tumor cell lines - KB, Col-2, LU-l, LNCaP, HUVEC, hTert-RPEl), tuberculosis (screening of extracts in the microplate Alamar Blue assay against Mycobacterium tuberculosis $H_{37}Ra\;and\;H_{37}Rv),$ all performed at UIC, and CNS-related diseases (with special focus on Alzheimer's disease, pain and rheumatoid arthritis, and asthma), peformed at Glaxo Smith Kline (UK). Source plants were selected based on two approaches: biodiversity-based (plants of Cuc Phuong National Park) and ethnobotany-based (medicinal plants of Cuc Phuong National Park in Vietnam and medicinal plants of Laos). At mc, as of July, 2001, active leads had been identified in the anti-HIV, anticancer, antimalarial, and anti- TB assay, after the screening of more than 800 extracts. At least 25 biologically active compounds have been isolated, 13 of which are new with anti-HIV activity, and 3 also new with antimalarial activity. At GSK of 21 plant samples with a history of use to treat CNS-related diseases tested to date, a number showed activity against one or more of the CNS assay targets used, but no new compounds have been isolated. The results of the drug discovery effort to date indicate that tropical plant diversity of Vietnam and Laos unquestionably harbors biologically active chemical entities, which, through further research, may eventually yield candidates for drug development. Although the substantial monetary benefit of the drug discovery process (royalties) is a long way off, the UIC ICBG program provides direct and real-term benefits to host country institutions and communities.

Comparison of Substance Change and Antibacterial Activity Before and After Fermentation Using Resource Plants for The Development of Natural Preservatives (천연방부제 개발을 위한 자원식물을 활용한 발효 전·후 물질 변화와 항균활성 비교)

  • Seo A Jung;Youn Ok Jung;Ga Hyeon Song;No Bok Park
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.25 no.1
    • /
    • pp.20-35
    • /
    • 2023
  • Chemical preservatives have a good effect on antibacterial activity, but many side effects on the human body have been reported. Recently, the development of natural preservatives that are harmless to the human body and have preservative functions and self-efficacy is active. In addition, in order to increase the absorption rate of natural products by the human body, the method of fermentation using strains is also increasing. Therefore, this study selected varieties that are harmless to the human body and have good antibacterial activity. 1. The yield of origin, thickness and solvent was investigated. Scutellaria baicalensis Georgi was made in China and received a yield of 21.88% from 50% ethyl alcohol extract. Salvia miltiorrhiza Bunge was made in Korea and received a yield of 25.62% from 50% ethyl alcohol extract. Dryopteris crassirhizoma Nakai was made in China and received a yield of 6.50% from 70% ethyl alcohol extract. 2. The solid fermentation with the S. baicalensis and S. miltiorrhiza with B. Subtilis yield gained 24.40%, 39.30%, and D. crassirhizoma obtained 11.10% yield when fermented with L. casei. 3. After the liquid fermentation, a clear zone of 9mm was identified for the S. aureus strain in the S. baicalensis, and the antibacterial activity was not confirmed in S. miltiorrhiza and D. crassirhizoma. 4. When the S. baicalensis was fermented with L. Casei, it showed high antibacterial activity in C. albicans and S. aureus. S. miltiorrhiza showed antibacterial activity in S. aureus when it was solid with S. cerevisiae. When the spectators were solid with L. casei and S. cerevisiae, antibacterial activity was high in E. coli and S. aureus. Overall, the antibacterial activity after fermentation was much higher than when fermented. 5. The change in active ingredients was baicalin 101.57, baicalein 28.26, and wogonin 5.33mg/g in the S. baicalensis that did not ferment solid. When solid fermentation with S. cerevisiae, the content of baicalinin with baicalin 94.31, baicalein 30.41, and wogonin 3.57mg/g was found to have increased. S. miltiorrhiza that was not fermented, salvianolic acid A was 1.82mg/g, and when fermented with S. cerevisiae, it increased to 5.70mg/g. The active ingredients of the spectators were flavaspidic acid AP, flavaspidic acid PB, flavaspidic acid AB, and flavaspidic acid BB.

Review of the study on the surfactant-induced foliar uptake of pesticide (계면활성제에 의해 유도되는 농약의 엽면 침투성 연구 현황)

  • Yu, Ju-Hyun;Cho, Kwang-Yun;Kim, Jeong-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.1
    • /
    • pp.16-24
    • /
    • 2002
  • Research trends in the measurement of foliar uptake of pesticides and the recently proposed action mechanism of the surfactant-induced uptake of pesticides were reviewed with the related reports and studies. Major techniques used in those fields are bioassay, radiotracer techniques with leaves or cuticular membrane. Recently, a new method using Congo Red as a tracer was proposed. The limiting factor in the pesticides uptake into leaves is the waxy layer which consists of the epicuticular and cuticular wax. Physico-chemical parameters such as molar volume, water solubility and partition coefficient of pesticides have limited influences on the pesticide uptake into leaves. Polydisperse ethoxylated fatty alcohol surfactants are well known as the good activator for many pesticides. It is now generally agreed that uptake activation is not related to the intrinsic surface active properties of surfactants such as surface activity, solvent property, humectancy and critical micelle concentration. Recent studies using ESR-spectroscopy revealed that the surfactants have an unspecific plasticising effect on the molecular structure of the wax and cuticular matrix, leading to increased mobilities of pesticides. Penetration of surfactants into waxy layer altered the pesticide mobility in wax and the partition coefficient of pesticide, and then the pesticides penetration into leaves was enhanced temporally. The enhancing effect of surfactant could be significantly different depending on the carbon number of aliphatic moiety and the number of ethoxy group in polyoxyethylene chain of surfactants. It is suggested that the rate of penetration of surfactants should have a significant relationship with the rate of penetration of pesticides.

Heterogeneous Oxidation of Liquid-phase TCE over $CoO_x/TiO_2$ Catalysts (액상 TCE 제거반응을 위한 $CoO_x/TiO_2$ 촉매)

  • Kim, Moon-Hyeon;Choo, Kwang-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.253-261
    • /
    • 2005
  • Catalytic wet oxidation of ppm levels of trichloroethylene (TCE) in water has been conducted using $TiO_2$-supported cobalt oxides at a given temperature and weight hourly space velocity. 5% $CoO_x/TiO_2$ might be the most promising catalyst for the wet oxidation at $36^{\circ}C$ although it exhibited a transient behavior in time on-stream activity. Not only could the bare support be inactive for the wet decomposition reaction, but no TCE removal also occurred by the process of adsorption on $TiO_2$ surface. The catalytic activity was independent of all particle sizes used, thereby representing no mass transfer limitation in intraparticle diffusion. Characterization of the $CoO_x$ catalyst by acquiring XPS spectra of both fresh and used Co surfaces gave different surface spectral features of each $CoO_x$. Co $2p_{3/2}$ binding energy of Co species exposed predominantly onto the outermost surface of the fresh catalyst appeared at 781.3 eV, which is very similar to the chemical states of $CoTiO_x$ such as $Co_2TiO_4$ and $CoTiO_3$. The spent catalyst possessed a 780.3 eV main peak with a satellite structure at 795.8 eV. Based on XPS spectra of reference Co compound, the TCE-exposed Co surfaces could be assigned to be in the form of mainly $Co_3O_4$. XRD measurements indicated that the phase structure of Co species in 5% $CoO_x/TiO_2$ catalyst even before reaction is quite comparable to the diffraction lines of external $Co_3O_4$ standard. A model structure of $CoO_x$ present on titania surfaces would be $Co_3O_4$, encapsulated in thin-film $CoTiO_x$ species consisting of $Co_2TiO_4$ and $CoTiO_3$, which may be active for the decomposition of TCE in a flow of water.