• Title/Summary/Keyword: Active chemical

검색결과 2,303건 처리시간 0.033초

Theoretical Models of Ethylene Polymerization

  • 장만채
    • Bulletin of the Korean Chemical Society
    • /
    • 제20권11호
    • /
    • pp.1269-1276
    • /
    • 1999
  • Metallocenes, whether using a cocatalyst or not, act as catalysts in ethylene polymerization. The positive charge on the transition metal of a metallocene might have an important role in polymerization as an active site in our model approach. Using semiempirical calculations in the absence of cocatalyst, we show one of the possibilities that the positive charge on a metallocene might be more easily transferred through the Cp ring of a ligand to the ethylene than to transfer directly from the transition metal to the ethylene. In these calculations, the charge on titanium in an eight C2H4 system is transferred and a polymer chain is produced. This reaction takes place only when ethylenes are arranged in a particular direction with respect to the ring, but does not take place for ethylenes near Ti or Cl atoms. The same mechanism is shown for a metallocene ligand which is sterically hindered or where the Cp ring is replaced by fluorenyl. These results suggest an entirely new polymerization mechanism in the absence of a cocatalyst in which the Cp ring is the active site.

Effect of Stewartia koreana Boiling Extract (SKBE) on Osteoarthritis and Purification of Spinasterol From SKBE

  • Sang Min Lee;Hye Jin Moon;Hong Joon Yoon;Chun soo Na;Jin beom Kim;Dae Seung Na;Tae Hoon Lee;Hakwon Kim
    • 대한화학회지
    • /
    • 제67권2호
    • /
    • pp.129-136
    • /
    • 2023
  • Osteoarthritis is to the abnormality of the inflammatory response of joint tissue caused by various causes such as aging, and muscle loss. In this study, the activity in joint inflammation was verified using SKBE, a plant extract, and the expression levels of arthritis-inducing proteins including MMP-1, MMP-3, MMP-13, and collagen type II in vitro were compared and analyzed. Furthermore, we synthesized α-spinasterol, an active ingredient of SKBE, by the previously reported synthesis method and these findings could provide a new starting point for the development of treatments for osteoarthritis.

The Cofactors Role on Chemical Mechanism of Recombinant Acetohydroxy Acid Synthase from Tobacco

  • Kim, Joung-Mok;Kim, Jung-Rim;Kim, Young-Tae;Choi, Jung-Do;Yoon, Moon-Young
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권5호
    • /
    • pp.721-725
    • /
    • 2004
  • Acetohydroxy acid synthase (AHAS) is one of several enzymes that require thiamine diphosphate and a divalent cation as essential cofactors. The active site contains several conserved ionizable groups and all of these appear to be important as judged by the fact that mutation diminishes or abolishes catalytic activity. Recently, we have shown [Yoon, M.-Y., Hwang, J.-H., Choi, M.-K., Baek, D.-K., Kim, J., Kim, Y.-T., Choi, J.-D. FEBS Letters 555 (2003), 185-191] that the activity is pH-dependent due to changes in $V_{max}$ and V/$K_m$. Data were consistent with a mechanism in which substrate was selectively catalyzed by the enzyme with an unprotonated base having a pK 6.48, and a protonated group having a pK of 8.25 for catalysis. Here, we have in detail studied the pH dependence of the kinetic parameters of the cofactors (ThDP, FAD, $Mg^{2+}$) in order to obtain information about the chemical mechanism in the active site. The $V_{max}$ of kinetic parameters for all cofactors was pH-dependent on the basic side. The pK of ThDP, FAD and $Mg^{2+}$ was 9.5, 9.3 and 10.1, respectively. The V/$K_m$ of kinetic parameters for all cofactors was pH-dependent on the acidic and on the basic side. The pK of ThDP, FAD and $Mg^{2+}$ was 6.2-6.4 on the acidic side and 9.0-9.1 on the basic side. The well-conserved histidine mutant (H392) did not affect the pH-dependence of the kinetic parameters. The data are discussed in terms of the acid-base chemical mechanism.

Antifungal Activity of the Methanol Extract of Myristica malabarica Fruit Rinds and the Active Ingredients Malabaricones Against Phytopathogenic Fungi

  • Choi, Nam-Hee;Choi, Gyung-Ja;Jang, Kyoung-Soo;Choi, Yong-Ho;Lee, Sun-Og;Choi, Jae-Eul;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • 제24권3호
    • /
    • pp.317-321
    • /
    • 2008
  • In a search for plant extracts with in vivo antifungal activity for plant diseases, we found that the methanol extract of Myristica malabarica fruit rinds effectively suppressed the development of several plant diseases. The methanol extract exhibited potent 1-day protective activity against rice blast, tomato late blight, wheat leaf rust and red pepper anthracnose. It also showed 7-day and 4-day protective activities against the plant diseases. Three antifungal resorcinols were isolated from the methanol extract of M. malabarica fruit rinds and identified as malabaricones A(MA), B(MB), and C(MC). Inhibitory activity of the three resorcinols against mycelial growth of plant pathogenic fungi varied according to compound and target species. All three compounds effectively reduced the development of rice blast, wheat leaf rust and red pepper anthracnose. In addition, MC was highly active for reducing the development of tomato late blight. This is the first report on the antifungal activities of malabaricones against filamentous fungi.

리튬이차전지에서 대기압 수소플라즈마 처리된 LiNi1/3Co1/3Mn1/3O2 양극 활물질의 특성분석 (Characterization of Atmospheric H2-Plasma-Treated LiNi1/3Co1/3Mn1/3O2 as Cathode Materials in Lithium Rechargeable Batteries)

  • 선호정;이재호;정현영;석동찬;정용호;박경세;심중표
    • 한국수소및신에너지학회논문집
    • /
    • 제24권2호
    • /
    • pp.160-171
    • /
    • 2013
  • $LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2$ powder for cathode materials in lithium rechargeable batteries was treated by atmospheric plasma containing hydrogen to investigate the relationship between charge/discharge performance and physical/chemical changes of materials. Hydrogen plasma at atmosphere pressure was irradiated on the surface of active materials, and the change for their crystal structure, surface morphology, and chemical composition were observed by XRD, SEM-EDS and titration method, respectively. The crystal structure and surface morphology of $H_2$ plasma-treated powders were not changed but their chemical compositions were slightly varied. For charge/discharge test, $H_2$ plasma affected initial capacity and rate capability of active materials but continuous cycling was not subject to plasma treatment. Therefore, it was observed that $H_2$ plasma treatment affected the surface of materials and caused the change of chemical composition.

마이크로 연소기에서 발생하는 열 소염과 화학 소염 현상 (II)- SiOx(x≤2) 플레이트의 물리, 화학적 성질이 소염에 미치는 영향 - (Thermal and Chemical Quenching Phenomena in a Microscale Combustor (II)- Effects of Physical and Chemical Properties of SiOx(x≤2) Plates on flame Quenching -)

  • 김규태;이대훈;권세진
    • 대한기계학회논문집B
    • /
    • 제30권5호
    • /
    • pp.405-412
    • /
    • 2006
  • In order to realize a stably propagating flame in a narrow channel, flame instabilities resulting from flame-wall interaction should be avoided. In particular flame quenching is a significant issue in micro combustion devices; quenching is caused either by excessive heat loss or by active radical adsorptions at the wall. In this paper, the relative significance of thermal and chemical effects on flame quenching is examined by means of quenching distance measurement. Emphasis is placed on the effects of surface defect density on flame quenching. To investigate chemical quenching phenomenon, thermally grown silicon oxide plates with well-defined defect distribution were prepared. ion implantation technique was used to control defect density, i.e. the number of oxygen vacancies. It has been found that when the surface temperature is under $300^{\circ}C$, the quenching distance is decreased on account of reduced heat loss; as the surface temperature is increased over $300^{\circ}C$, however, quenching distance is increased despite reduced heat loss effect. Such abberant behavior is caused by heterogeneous surface reactions between active radicals and surface defects. The higher defect density, the larger quenching distance. This result means that chemical quenching is governed by radical adsorption that can be parameterized by oxygen vacancy density on the surface.

Effect of pH and Concentration on Electrochemical Corrosion Behavior of Aluminum Al-7075 T6 Alloy in NaCl Aqueous Environment

  • Raza, Syed Abbas;Karim, Muhammad Ramzan Abdul;Shehbaz, Tauheed;Taimoor, Aqeel Ahmad;Ali, Rashid;Khan, Muhammad Imran
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권2호
    • /
    • pp.213-226
    • /
    • 2022
  • In the present study, the corrosion behavior of aluminum Al-7075 tempered (T-6 condition) alloy was evaluated by immersion testing and electrochemical testing in 1.75% and 3.5% NaCl environment at acidic, neutral and basic pH. The data obtained by both immersion tests and electrochemical corrosion tests (potentiodynamic polarization and electrochemical impedance spectroscopy tests) present that the corrosion rate of the alloy specimens is minimum for the pH=7 condition of the solution due to the formation of dense and well adherent thin protective oxide layer. Whereas the solutions with acidic and alkaline pH cause shift in the corrosion behavior of aluminum alloy to more active domains aggravated by the constant flux of acidic and alkaline ions (Cl- and OH-) in the media which anodically dissolve the Al matrix in comparison to precipitated intermetallic phases (cathodic in nature) formed due to T6 treatment. Consequently, the pitting behavior of the alloy, as observed by cyclic polarization tests, shifts to more active regions when pH of the solutions changes from neutral to alkaline environment due to localized dissolution of the matrix in alkaline environment that ingress by diffusion through the pores in the oxide film. Microscopic analysis also strengthens the results obtained by immersion corrosion testing and electrochemical corrosion testing as the study examines the corrosion behavior of this alloy under a systematic evaluation in marine environment.

Synthesis and Biological Evaluation of 3-Amino-4-aryl-piperidine Derivatives as BACE 1 Inhibitors

  • Lim, Hee-Jong;Jung, Myung-Hee;ChoiLee, Ihl-Young;Park, Woo-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권9호
    • /
    • pp.1371-1376
    • /
    • 2006
  • BACE 1 ($\beta$-secretase), a membrane bound aspartic protease, is a key enzyme in the process of amyloid precursor protein (APP) into A$\beta$ peptide which is considered to play a causative role in Alzheimers Disease (AD). Here, we reported the synthesis and inhibitory activity of optically active 3-amino-4-aryl-piperidines.

Influence of Physical Load on the Stability of Organic Solar Cells with Polymer : Fullerene Bulk Heterojunction Nanolayers

  • Lee, Sooyong;Kim, Hwajeong;Kim, Youngkyoo
    • Current Photovoltaic Research
    • /
    • 제4권2호
    • /
    • pp.48-53
    • /
    • 2016
  • We report the effect of physical load on the stability of organic solar cells under physical loads. The active layers in organic solar cells were fabricated with bulk heterojunction films (BHJ) films of poly (3-hexylthiophene) and phenyl-$C_{61}$-butyric methyl ester. The loading time was varied up to 60 s by keeping the physical load constant. Results showed that the open circuit voltage was not influenced by the physical load but other solar cell parameters were sensitive to the loading time. The fill factor was very slightly increased at 15 s, while short circuit current density was well kept for 30 s. The power conversion efficiency was reasonably maintained for 45 s but became significantly decreased by the continuous loading for 60 s.

Electrochemical Biosensors based on Nanocomposites of Carbon-based Dots

  • Ngo, Yen-Linh Thi;Jana, Jayasmita;Chung, Jin Suk;Hur, Seung Hyun
    • Korean Chemical Engineering Research
    • /
    • 제58권4호
    • /
    • pp.499-513
    • /
    • 2020
  • Among the many studies of carbon-based nanomaterials, carbon-based dots (CDs) have attracted considerable interest owing to their large surface area, intrinsic low-toxicity, excellent biocompatibility, high solubility, and low-cost with environmentally friendly routes, as well as their ability for modification with other nanomaterials. CDs have several applications in biosensing, photocatalysis, bioimaging, and nanomedicine. In addition, the fascinating electrochemical properties of CDs, including high active surface area, excellent electrical conductivity, electrocatalytic activity, high porosity, and adsorption capability, make them potential candidates for electrochemical sensing materials. This paper reviews the recent developments and synthesis of CDs and their composites for the proposed electrochemical sensing platforms. The electrochemical principles and future perspective and challenges of electrochemical biosensors are also discussed based on CDs-nanocomposites.