• 제목/요약/키워드: Active catalyst

검색결과 477건 처리시간 0.024초

Direct Synthesis of H2O2 over Ti-Containing Molecular Sieves Supported Gold Catalysts: A Comparative Study for In-situ-H2O2-ODS of Fuel

  • Zhang, Han;Liu, Guangliang;Song, Haiyan;Chen, Chunxia;Han, Fuqin;Chen, Ping;Zhao, Zhixi;Hu, Shaozheng
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권10호
    • /
    • pp.3065-3072
    • /
    • 2013
  • Direct synthesis of $H_2O_2$ and in situ oxidative desulfurization of model fuel over Au/Ti-HMS and Au/TS-1 catalysts has been comparatively investigated in water or methanol. Maximum amount (82%) of active $Au^0$ species for $H_2O_2$ synthesis was obtained. Au/Ti-HMS and Au/TS-1 exhibited the contrary performances in $H_2O_2$ synthesis as $CH_3OH/H_2O$ ratio of solvent changed. $H_2O_2$ decomposition and hydrogenation in water was inhibited by the introduction of methanol. Effect of $O_2/H_2$ ratio on $H_2O_2$ concentration, $H_2$ conversion and $H_2O_2$ selectivity revealed a relationship between $H_2O_2$ generation and $H_2$ consumption. The highest dibenzothiophene removal rate (83.2%) was obtained over Au/Ti-HMS in methanol at 1.5 of $O_2/H_2$ ratio and $60^{\circ}C$. But removal of thiophene over Au/TS-1 should be performed in water without heating to obtain a high removal rate (61.3%). Meanwhile, $H_2$ conversion and oxidative desulfurization selectivity of $H_2$ were presented.

이산화탄소/프로필렌 옥사이드 공중합을 통한 저분자량 폴리(프로필렌 카보네이트)-폴리(에틸렌 글리콜) 블록 공중합체의 합성 (Synthesis of Low Molecular-weight Poly (Propylene Carbonate)-Poly (Ethylene Glycol) Block Copolymers through $CO_2$/Propylene Oxide Copolymerization)

  • 이상환;;전종엽;이분열
    • 청정기술
    • /
    • 제17권3호
    • /
    • pp.244-249
    • /
    • 2011
  • 이산화탄소/프로필렌 옥사이드 공중합을 통하여 고분자 사슬 내에 친수성기와 소수성기가 공존하는 저분자량의 블록 공중 합체를 합성하였다. 고활성의 촉매를 사용한 이산화탄소/프로필렌 옥사이드 공중합 반응에 단말기로 -OH기를 갖는 폴리(에틸렌 글리콜)(PEG)을 분자량 조절제로 투입하여 블록 공중합체를 합성하였다. 단말기 한쪽 끝에만 -OH기를 갖는 폴리(에틸렌 글리콜)을 투입하였을 때는 PEG-block-PPC (폴리(프로필렌 카보네이트)) 다이블록 공중합체가 얻어지고, 단말기 양쪽 끝 모두 -OH기를 갖는 폴리(에틸렌 글리콜)을 투입하였을 때는 PPC-block-PEG-block-PPC 트리블록 공중합체가 얻어진다. 제조된 블록 공중합체는 $^1H$-NMR 스펙트럼을 통하여 구조 분석을 하였고 GPC를 통하여 분자량을 측정하였다.

더블 레이어 흡수기를 이용한 고온 태양열 메탄-이산화탄소 개질반응 (Solar CO2-Reforming of Methane Using a Double-Layer Absorber)

  • 김동연;신일융;이주한;서태범
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.80-86
    • /
    • 2011
  • Solar reforming of methane with CO2 was successfully tested with a direct irradiated absorber on a parabolic dish capable of 5kWth solar power. And the new type of double-layer absorber - the front layer, porous metal foam which absorbs the radiation and transfers the heat from material to gas, and the back layer, catalytically-activated metal foam - was prepared, and its activity was tested by using electric furnace. Ni was applied as the active metal on the gamma-Al2O3 coated Ni metal foam for the preparation of the catalytically-activated metal foam layer. Compared to conventional direct irradiation of the catalytically activated metal foam absorber, this new type of double layer absorber is found to exhibit a superior reaction and thermal storage performance at the fluctuating incident solar radiation. In addition, unlike direct irradiation of the foam absorber, double layer absorber has better thermal resistance, which prevents the emergence of cracks caused by mechanical or thermal shock. The total solar power absorbed reached up to 3.25kW and the maximum CH4 conversion was almost 59%.

  • PDF

알칼라인 수전해용 Ni-Fe 합금 전착 전극의 특성 (Characterization of Ni-Fe Alloy Electrodeposited Electrode for Alkaline Water Electrolysis)

  • 안다솔;배기광;박주식;김창희;강경수;조원철;조현석;김영호;정성욱
    • 한국수소및신에너지학회논문집
    • /
    • 제27권6호
    • /
    • pp.636-641
    • /
    • 2016
  • Alkaline water electrolysis is commercial hydrogen production technology. It is possible to operate MW scale plant. Because It used non-precious metal for electrode. But It has relatively low current density and low efficiency. In this study, research objective is development of anode for alkaline water electrolysis with low cost, high corrosion resistance and high efficiency. Stainless steel 316L (SUS 316L) was selected for a substrate of electrode. To improve corrosion resistance of substrate, Nickel (Ni) layer was electrodeposited on SUS 316L. Ni-Fe alloy was electrodeposited on the passivated Ni layer as active catalyst for oxygen evolution reaction(OER). We optimized preparation condition of Ni-Fe alloy electrodeposition by changing current density, electrodeposition time and composition ratio of Ni-Fe electrodeposition bath. This electrodes were electrochemically evaluated by using Linear sweep voltammetry (LSV) and Cyclic voltammetry (CV). The Ni-Fe alloy (Ni : Fe = 1 : 1) showed best activity of OER. The optimized electrode decreased overpotential about 40% at $100mA/cm^2$ compared with Ni anode.

시동/정지 반복에 의한 데드엔드형 고분자전해질 연료전지의 성능 감소 (Performance Degradation of Dead-end Type PEMFC by Startup and Shutdown Cycles)

  • 정재현;정재진;송명현;정회범;나일채;이호;박권필
    • Korean Chemical Engineering Research
    • /
    • 제51권5호
    • /
    • pp.540-544
    • /
    • 2013
  • 고분자전해질연료전지(PEMFC)는 시동/정지과정에서 성능과 수명이 감소한다. 본 연구에서는 캐소드가스로 산소를 사용하는 데드엔드 형 PEMFC의 시동/정지 과정의 영향을 분극곡선, 임피던스(EIS), SEM과 TEM을 사용해 연구하였다. 시동/정지 과정에서 PEMFC 성능감소를 막기 위해서는 더미 로드를 사용해야 함을 보였다. 시동/정지 반복과정 중 50% 상대습도(RH)에서 캐소드 카본지지체의 부식에 의한 열화가 100% RH보다 심했다. 데드엔드 형 PEMFC의 정지과정에서 PEMFC에 물을 공급해줌으로써 50% RH에서 열화속도를 감소시켰다.

Dehydrogenation of Ethylbenzene to Styrene with CO2 over TiO2-ZrO2 Bifunctional Catalyst

  • Burri, David Raju;Choi, Kwang-Min;Han, Sang-Cheol;Burri, Abhishek;Park, Sang-Eon
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권1호
    • /
    • pp.53-58
    • /
    • 2007
  • In the dehydrogenation of ethylbenzene to styrene, CO2 could play a role as an oxidant to increase conversion of ethylbenzene and stability as well over TiO2-ZrO2 mixed oxide catalysts. TiO2-ZrO2 catalysts were prepared by co-precipitation method and were characterized by BET surface area, bulk density, X-ray diffraction, temperature programmed desorption of NH3 and CO2. These catalysts were found to be X-ray amorphous with enhanced surface areas and acid-base properties both in number and strength when compared to the respective oxides (TiO2 and CO2). These catalysts were found to be highly active (> 50% conversion), selective (> 98%) and catalytically stable (10 h of time-on-stream) at 600 oC for the dehydrogenation of ethylbenzene to styrene. However, in the nitrogen stream, both activity and stability were rather lower than those in the stream with CO2. The TiO2-ZrO2 catalysts were catalytically superior to the simple oxide catalysts such as TiO2 and ZrO2. The synergistic effect of CO2 has clearly been observed in directing the product selectivity and prolonging catalytic activity.

탄소나노 튜브위에 성장된 Pd 및 Pt 나노 입자의 제조 및 특성 (Synthesis and Property of Carbon Nanotube-Supported Pd and Pt Nanoparticles)

  • 김형균;이임렬
    • 한국재료학회지
    • /
    • 제19권4호
    • /
    • pp.192-197
    • /
    • 2009
  • Carbon nanotubes (CNT) were used as a catalyst support where catalytically active Pd and Pt metal particles decorated the outside of the external CNT walls. In this study, Pd and Pt nanoparticles supported on $HNO_3$-treated CNT were prepared by microwave-assisted heating of the polyol process using $PdCl_2$ and $H_2PtCl_6{\codt}6H_2O$ precursors, respectively, and were then characterized by SEM, TEM, and Raman. Raman spectroscopy showed that the acid treated CNT had a higher intensity ratio of $I_D/I_G$ compared to that of non-treated CNT, indicating the formation of defects or functional groups on CNT after chemical oxidation. Microwave irradiation for total two minutes resulted in the formation of Pd and Pt nanoparticles on the acid treated CNT. The sizes of Pd and Pt nanoparticles were found to be less than 10 nm and 3 nm, respectively. Furthermore, the $SnO_2$ films doped with CNT decorated by Pd and Pt nanoparticles were prepared, and then the $NO_2$ gas response of these sensor films was evaluated under $1{\sim}5\;ppm$ $NO_2$ concentration at $200^{\circ}C$. It was found that the sensing property of the $SnO_2$ film sensor on $NO_2$ gas was greatly improved by the addition of CNT-supported Pd and Pt nanoparticles.

삼상 계면대에서 활성 탄소섬유로 된 연료전지 전극의 흡착 특성 (Adsorption Properties of Fuel-Cell Electrode Produced from Activated Carbon Fibers in Three Phase Distribution)

  • 박수진;정효진;나창운
    • 폴리머
    • /
    • 제27권1호
    • /
    • pp.46-51
    • /
    • 2003
  • 본 연구에서는 적절한 반응 삼상 계면대를 형성하기 위해서 카본블랙과 활성 탄소섬유를 혼합하여 연료전지의 전극을 제조하고, 전극 삼상 계면대의 변화를 고찰하였다. 활성 탄소섬유의 직량비에 따른 백금의 담지량과 백금 입자크기는 각각 원자흡광분석기와 X-선 회절기를 사용하여 분석하였다. 또한 비표면적( $S_{BET}$), 미세기공도 및 기공크기분포(PSD)를 포함하는 전극의 기공구조는 BET를 이용하연 고찰하였으며, 주사전자현미경을 이용하여 전극 삼상 계면대의 형태를 관찰하였다. 실험 결과, 백금의 담지율은 활성 탄소섬유의 첨가에는 큰 영향을 받지 않았다. 반면에, 전극 삼상 계면대는 30% 활성 탄소섬유를 카본블랙에 첨가하였을 경우 더 향상되었는데 이는 촉매의 활성점을 제공하는 미세기공 영역이 증가하였기 때문으로 사료된다.다.

고분자전해질연료전지를 위한 그래핀 기반 PtM 촉매들의 산소환원반응성 연구 (A Study on Oxygen Reduction Reaction of PtM Electrocatalysts Synthesized on Graphene for Proton Exchange Membrane Fuel Cell)

  • 양종원;최장군;조한익;박종진;권용재
    • 한국수소및신에너지학회논문집
    • /
    • 제25권4호
    • /
    • pp.378-385
    • /
    • 2014
  • In this research, we investigate electrical performance and electrochemical properties of graphene supported Pt (Pt/G) and PtM (M = Ni and Y) alloy catalysts (PtM/Gs) that are synthesized by modified polyol method. With the PtM/Gs that are adopted for oxygen reduction reaction (ORR) as cathode of proton exchange membrane fuel cells (PEMFCs), their catalytic activity and ORR performance and electrical performance are estimated and compared with one another. Their particle size, particle distribution and electrochemically active surface (EAS) area are measured by TEM and cyclic voltammetry (CV), respectively. On the other hand, regarding ORR activity and electrical performance of the catalysts, (i) linear sweeping voltammetry by rotating disk electrode and rotating ring-disk electrode and (ii) PEMFC single cell tests are used. The TEM and CV measurements demonstrate particle size and EAS of PtM/Gs are compatible with those of Pt/G. In case of PtNi/G, its half-wave potential, kinetic current density, transferred electron number per oxygen molecule and $H_2O_2$ production % are excellent. Based on data obtained by half-cell test, when PEMFC singlecell tests are carried out, current density measured at 0.6V and maximum power density of the PEMFC single cell employing PtNi/G are better than those employing Pt/G. Conclusively, PtNi/Gs synthesized by modified polyol shows better ORR catalytic activity and PEMFC performance than other catalysts.

기상 반응용 스마트 용출 촉매 연구 동향 (A review of smart exsolution catalysts for the application of gas phase reactions)

  • 황루이;김형준;한정우
    • 세라미스트
    • /
    • 제23권2호
    • /
    • pp.211-230
    • /
    • 2020
  • Perovskite-type oxides with the nominal composition of ABO3 can exsolve the B-site transition metal upon the controlled reduction. In this exsolution process, the transition metal emerges from the oxide lattice and migrates to the surface at which it forms catalytically active nanoparticles. The exsolved nanoparticles can recover back to the bulk lattice under oxidation treatment. This unique regeneration character by the redox treatment provides uniformly dispersed noble metal nanoparticles. Therefore, the conventional problem of traditional impregnated metal/support, i.e., sintering during reaction, can be effectively avoided by using the exsolution phenomenon. In this regard, the catalysts using the exsolution strategy have been well studied for a wide range of applications in energy conversion and storage devices such as solid oxide fuel cells and electrolysis cells (SOFCs and SOECs) because of its high thermal and chemical stability. On the other hand, although this exsolution strategy can also be applied to gas phase reaction catalysts, it has seldomly been reviewed. Here, we thus review recent applications of the exsolution catalysts to the gas phase reactions from the aspects of experimental measurements, where various functions of the exsolved particles were utilized. We also review non-perovskite type metal oxides that might have exolution phenomenon to provide more possibilities to develop higher efficient catalysts.