• Title/Summary/Keyword: Active boost converter

Search Result 116, Processing Time 0.028 seconds

Characteristic of Boost input type active clamp DC-DC converter (Boost 입력형 능동클램프 DC-DC 컨버터의 동작특성)

  • Ceong, Cin-Beom;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.301-303
    • /
    • 2001
  • This paper proposes the boost input type active clamp DC-DC converter featuring the high efficiency and improved EMI characteristics. The main characteristic of the converter is to operate with the non-pulsating input and output currents. Besides, it has the zero-voltage switching (ZVS) and low voltage stress characteristics. For the proposed converter, the detailed operation principles and the simulation results are presented.

  • PDF

A Novel Active Boost Power Converter for single phase SRM (단상 SRM 구동을 위한 새로운 능동 부스트 전력 컨버터)

  • Seok, Seung-Hun;Liang, Jianing;Lee, Dong-Heeㅋ;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.277-279
    • /
    • 2008
  • In this paper, a novel active boost converter for SR drive is proposed. An active capacitor circuit is added in the front-end. Based on this active capacitor network, when boost switch turns off, this network seems as passive capacitor network. And the voltage of boost capacitor can keep balance with dc-link voltage automatically. In the capacitor network, discharging voltage is general dc-link voltage in parallel-connected capacitors; charging voltage is double dc-link voltage in series-connected capacitors. When boost switch turns on, two capacitors are connected in series, and discharging voltage is up to double dc-link voltage. So the fast excitation current can be obtained from this mode. Profit from fast excitation and fast demagnetization mode, the performance and output power can be improved. Some computer simulations are done to verify the performance of proposed converter.

  • PDF

Power Factor with Single Power Stage AC/DC Converter Operated in Active-Clamp Mode (능동 클램프 모드로 동작하는 단일 전력 AC/DC 컨버터에 의한 역률개선)

  • Yoon, Shin-Yong;Baek, Hyun-Soo;Kim, Yong;Kim, Cherl-Jin;Eo, Chang-Jin
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.8
    • /
    • pp.392-401
    • /
    • 2001
  • This paper presents the single-stage high power factor AC to DC converter operated in active-clamp mode. The proposed converter is added active-clamping circuit to boost-flyback single-stage power factor corrected power supply. The active-clamping circuit limits voltage spikes, recycles the energy trapped in the leakage inductance, and provides a mechanism for achieving soft switching of the electronic switches to reduce the switching loss. The auxiliary switch of active-clamping circuit uses the same control and driver circuit as the main switch to reduce the additional cost and size. To verify the performance of the proposed converter, a 100W converter has been designed. The proposed converter gives good power factor correction, low line current harmonic distortions, and tight output voltage regulation, as used unity power factor.

  • PDF

Zero-Voltage-Switching Boost Converter Using a Coupled Inductor

  • Do, Hyun-Lark
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.16-20
    • /
    • 2011
  • This paper presents a zero-voltage-switching (ZVS) boost converter using a coupled inductor. It utilizes an additional winding to the boost inductor and an auxiliary diode. The ZVS characteristic of the proposed converter reduces the switching losses of the active power switches and raises the power conversion efficiency. The principle of operation and a system analysis are presented. The theoretical analysis and performance of the proposed converter were verified with a 100W experimental prototype operating at a 107 kHz switching frequency.

A Study on the Average Current-Mode Control AC/DC ZVT-Boost Converter with Active-Clamp Method (능동 클램프 방식을 이용한 AC/DC ZVT 승압형 컨버터의 평균전류모드 제어에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Kim, Pill-Soo;Lim, Nam-Hyuk;Yoon, Suk-Ho;Chang, Sung-Won
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1005-1008
    • /
    • 2001
  • This paper presents average current-mode control AC/DC ZVT(Zero Voltage Transition) Boost Converter. This boost converter perceives feed forward signal of input and feedback signal of output for average current-mode control proposed converter employs active-clamp method for ZVT. This converter gives the good PFC(Power Factor Correction), low line current hormonic distortions and tight output voltage regulations. This converter also has a high efficiency by active-clamp method. The principle of operation, feature, and design considerations are illustrated and verified through the experiment with a 150W, 120kHz prototype converter.

  • PDF

Active-clamp Class-E High Frequency Resonant Inverter with Single-st (단일 전력단으로 구성된 Active-clamp E급 고주파 공진 인버터)

  • Kang, Jin-Wook;Won, Jae-Sun;Kim, Dong-Hee;Ro, Chae-Gyun;Sim, Kwang-Yeal;Le, Bong-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1193-1195
    • /
    • 2002
  • This paper presents Active-clamp Class-E high frequency resonant inverter with single-stage. The proposed circuit is integrated Active-c class-E circuit to boost converter with the funct power factor correction. Boost converter is opera positive and negative half cycle respectively at frequency(60Hz), operating in Discontinuous Con Mode(DCM) of boost converter performs high p factor. By adding active-clamp circuit in Cl inverter, main switch of inverter part is operat only ZVS(Zero Voltage Switch), but also reduce switching voltage stress of main switch. Simulation result using Psim4.1 show that the p prove the validity of theoretical analysis. This proposed inverter will be able to be pract used as a power supply in various fields are ind heating applications, DC-DC converter etc.

  • PDF

A Study On Sing1e-Stage Active-Clamp Type High Frequency Resonant Inverter (단일 전력단 능동 클램프형 고주파 공전 인버터에 관한 연구)

  • 강진욱;원재선;김동희;조규판;김경식
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.287-291
    • /
    • 2002
  • This paper presents active-clamp class-E high frequency resonant inverter with single-stage. The proposed circuit is integrated active-clamp class-E circuit to boost converter with the function of power factor correction. Boost converter is operated in positive and negative half cycle respectively at line frequency(60Hz), Such a operating in discontinuous conduction mode(DCM) of boost converter performs high power factor. By adding active-clamp circuit in class-E inverter, main switch of inverter part is operated not only ZVS(Zero Voltage Switch) but also reduced the switching voltage stress of main switch. This paper shows that simulation result using Psim 4.1 prove the validity of theoretical analysis. This proposed inverter will be able to be practically used as a power supply in various fields as induction heating applications, DC-DC converter etc.

  • PDF

Characteristics of a High Power Factor Boost Converter with Continuous Current Mode Control

  • Kim, Cherl-Jin;Jang, Jun-Young
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.65-72
    • /
    • 2004
  • Switching power supply systems are widely used in many industrial fields. Power factor correction (PFC) circuits have a tendency to be applied in new power supply designs. The input active power factor correction (APFC) circuits can be implemented in either the two-stage approach or the single-stage approach. The two-stage approach can be classified into boost type PFC circuit and dc/dc converter. The power factor correction circuit with a boost converter used as an input power source is studied in this paper. In a boost power factor correction circuit there are two feedback control loops, which are a current feedback loop and a voltage feedback loop. In this paper, the regulation performance of output voltage and compensator to improve the transient response presented at the continuous conduction mode (CCM) of the boost PFC circuit is analyzed. The validity of designed boost PFC circuit is confirmed by MATLAB simulation and experimental results.

Improved ZVT AC/DC PFC Boost Converter (개선된 ZVT AC/DC PFC Boost 컨버터)

  • Ryu, Jong-Gyu;Kim, Yong;Bae, Jin-Yong;Gye, Sang-Bum;Kwon, Soon-Do
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.172-175
    • /
    • 2005
  • Recently international regulations governing the amount of harmonic currents(e.g IEC 61000-3-2) became mandatory and active Power factor correction (PFC) pre-regulator circuit became inevitable for the AC/DC converters. Among these topologies, the boost topology represents an optimum solution for a PFC pre-regulation in a high power application. This paper propose improved ZVT(Zero Voltage Transition) AC/DC PFC Boost using the average current control employing a soft-switching technique of the auxiliary switch with a minimum number of components. The conventional ZVT PFC Boost Converter has a disadvantage that the auxiliary switch turns off hard, which influences the overall efficiency and the EMI problem. In this paper, an improved ZVT PFC Boost converter using active snubber is proposed to minimize the switching loss of the auxiliary. The prototype of 100kHz, 640W system was implemented to show the improved performance.

  • PDF

Comparison of Converter Topologies for Single Phase Switched Reluctance Motor (단상 SRM용 컨버터 특성비교)

  • Kim, Tae-Hyoung;Seok, Seung-Hun;Liang, Jianing;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.139-142
    • /
    • 2009
  • Comparison of three converter topologies for single phase switched reluctance motor is proposed in this paper. Due to the limitation of do-link voltage, conventional asymmetric converter is difficult to build up enough phase current in the high speed operation. In order to solve this problem, boost converter is used to improve the performance. Two active boost converters are reviewed: one is series-connected type, another is parallel-connected. Otherwise, a novel active boost converter is proposed. The comparison of these converters is based on the voltage raring of capacitor, stability and converter topology. Because the converter selection depends on the motor design, the single phase 6/6 SRM is considered in this paper. Some simulations results are executed. And the results verified the analysis in this paper.

  • PDF