• Title/Summary/Keyword: Active body control

Search Result 310, Processing Time 0.031 seconds

The wake flow control behind a circular cylinder using ion wind (이온풍을 이용한 실린더 뒤의 후류 제어)

  • Hyun K T;Chun C H
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.459-462
    • /
    • 2002
  • Many active and passive flow control methods have been studied since decades, but there are only few works about flow control methods using ion wind. This paper presents an experimental study on the wake control behind a circular cylinder using ion wind, a bulk motion of neutral molecules driven by locally ionized air of corona discharge. Experiments are done f3r different electrohydrodynamic numbers - the ratio of an electrical body farce to a fluid Inertial force - from 0 to 2 and for the Reynolds number ranging from $4{\times}10^3\;to\;8{\times}10^3$. Pressure distributions over a cylinder surface are measured and flow visualizations are carried out by smoke wire method. Flow visualizations confirm that ion wind affects significantly the wake structure behind a circular cylinder and pressure drag could be dramatically reduced by the superimposing ion wind.

  • PDF

Control of Vehicle Lateral Dynamics using Sliding Mode with Time-Varying Switching Surface (시변 절환면을 갖는 슬라이딩 모드에 의한 차량의 횡방향 운동제어)

  • Lee, Chang-Ro;Yang, Hyun-Seok;Park, Young-Pil
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.458-463
    • /
    • 2000
  • This paper presents a design of the controller for vehicle lateral dynamics using active yaw moment. Vehicle lateral motion is incorporated with directional controllability and stability. These are conflicting each other from the view of vehicle handling performance. To compromise the trade-off between these two aspects, we suggest a new control algorithm based on the sliding mode with time-varying switching surface according to the body side slip angle. The controller can deal with the nonlinear region in vehicle driving and be robust to the parameter uncertainties in the plant model. Control performance was evaluated from the simulation.

  • PDF

Chattering Free Sliding Mode Control of Upper-limb Rehabilitation Robot with Handling Subject and Model Uncertainties (환자와 로봇의 모델 불확도를 고려한 상지재활로봇의 채터링 없는 슬라이딩 모드 제어)

  • Khan, Abdul Manan;Yun, Deok-Won;Han, Changsoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.421-426
    • /
    • 2015
  • Need to develop human body's posture supervised robots, gave the push to researchers to think over dexterous design of exoskeleton robots. It requires to develop quantitative techniques to assess human motor function and generate the command to assist in compliance with complex human motion. Upper limb rehabilitation robots, are one of those robots. These robots are used for the rehabilitation of patients having movement disorder due to spinal or brain injuries. One aspect that must be fulfilled by these robots, is to cope with uncertainties due to different patients, without significantly degrading the performance. In this paper, we propose chattering free sliding mode control technique for this purpose. This control technique is not only able to handle matched uncertainties due to different patients but also for unmatched as well. Using this technique, patients feel active assistance as they deviate from the desired trajectory. Proposed methodology is implemented on seven degrees of freedom (DOF) upper limb rehabilitation robot. In this robot, shoulder and elbow joints are powered by electric motors while rest of the joints are kept passive. Due to these active joints, robot is able to move in sagittal plane only while abduction and adduction motion in shoulder joint is kept passive. Exoskeleton performance is evaluated experimentally by a neurologically intact subjects while varying the mass properties. Results show effectiveness of proposed control methodology for the given scenario even having 20 % uncertain parameters in system modeling.

자동차 능동형 샤시시스템 개발동향

  • 허승진
    • Journal of the KSME
    • /
    • v.32 no.10
    • /
    • pp.847-857
    • /
    • 1992
  • 일반적으로 자동차의 샤시(chassis)라 하면 총체적인 개념에서 자동차로부터 차체(body)를 제외한 부분을 일컫는데, 구동 및 제동장치, 바퀴 현가장치, 조향장치, 타이어 및 휠 등이 이에 속한다. 1970년대 마이크로 컴퓨터의 응용기술이 도입되면서 엔진분야에서 시작한 자동차 전자화기술은 구동 및 제동분야에서의 전자제어식 제동잠김 및 구동 미끄럼방지 시스템(ABS/TCS)의 응용기 술을 거쳐 1980년 중반부터 차량의 현가 및 조향분야에서 능동형의 시스템이 개발되기 시작하 였다. 그 대표적인 예로서 자동차용 적응식 및 반 능동식 가변댐퍼(variable damper), 능동식 현가시스템(active suspension system) 그리고 4륜조향 시스템(four wheel steering system)을 들 수 있다. 1990년대에 들어서는 이러한 각종 능동형 시스템이 종합적으로 고려되어 설계되는 이 른바 자동차의 샤시 통합제어 시스템(chassis integrated control system)또는 능동형 샤시 시스템 (active chassis system)으로 발전되어 가고 있는 추세에 있다. 이 글에서는 최근에 가장 대표 적인 능동형 샤시시스템으로서 각종 능동식 현가시스템 및 4륜조향 시스템의 개발동향 및 기 술적, 경제적인 측면에서의 종합적인 검토를 하고자 한다.

  • PDF

Simultaneous Optimization of Vehicle Suspensions for the Improvement of Frequency-weighted Riding Comfort (주파수 가중치를 고려한 승차감의 향상을 위한 차량 현가장치의 동시최적화)

  • 김창동;정의봉
    • Journal of KSNVE
    • /
    • v.5 no.1
    • /
    • pp.29-35
    • /
    • 1995
  • This paper presents the simultaneous optimal design of structure and LQG control systems for the improvement of riding comforts of active vehicle suspension systems. The performance index of riding comforts is extended to include frequency-weighted acceleration in the quadratic cost functional. Janeway human response curve with respect to acceleration is used to verify the usefulness of the presented method. The method is applied to a half model of an active vehicle suspension systems with elastic body moving on randomly profiled road. The values of stiffness of suspensions are used for the structural design variables. The conjugate gradient method is used for optimization. The simulated results of simultaneous optimization with frequency-weighted cost functional are compared with those without frequency- weighted cost functional.

  • PDF

Beneficial Effects of Growth Hormone Treatment in Prader-Willi Syndrome

  • Kim, Jinsup;Yang, Aram;Cho, Sung Yoon;Jin, Dong-Kyu
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.3 no.2
    • /
    • pp.41-43
    • /
    • 2017
  • Prader-Willi syndrome (PWS) is a genetic disorder that is considered, especially on child, to cause poor feeding, hypotonia, failure to thrive, developmental delay and hypogonadism which is known to affect between 1 in 10,000 and 30,000 people. The children with PWS are viewed as affected by growth hormone (GH) insufficiency, although the exact mechanisms of GH deficiency are not fully understood. However, the benefits of GH treatment in children with PWS are well established. Myers, et al. (2006), Grugni, et al. (2016) indicated its positive effects on linear growth, body composition, motor function, respiratory function and psychomotor development. Despite of its effectiveness and advantages had been well known and proven in many other studies, there is only one recombinant GH product that is approved for PWS in Korea, $Genotropin^{(R)}$, till now. A phase III clinical study of GH treatment with $Eutropin^{TM}$, in 34 Korean PWS children is in progress, which is expected to have comparable effects and safety profile with the active control by assessing auxological changes such as height standard deviation score, body composition changes such as lean body mass and percent body fat, motor and cognitive development using Bayley scale, and safety profiles.

Active control of pump noise of dishwashers using FxLMS algorithm (FxLMS 알고리듬 기법을 이용한 식기 세척기의 펌프 소음 능동 제어)

  • Tark, Un-su;Oh, Han-Eum;Hong, Chinsuk;Jeong, Weui-Bong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.1
    • /
    • pp.46-54
    • /
    • 2021
  • In this paper, active noise control was performed to reduce radiated noise in the low frequency band of dishwashers. First, through an analysis of the noise environment of the dishwasher, it was confirmed that the pump noise contributed the most to the radiated noise in the low frequency band, From the result of the noise environment analysis, the reference signal was selected to be the vibration signal of the pump body. The reference signal was obtained by using the accelerometer on the pump body, which can prevent acoustic feedback. The error signal sensor was selected as a microphone located at 1 m in front of the dishwasher and 0.5 m in height. And to design the controller, the error signal and the reference signal were measured at the operational rpms of the dishwasher at 2,500 rpm, 2,600 rpm and 2,800 rpm, and the secondary path transfer function was measured. The designed controller was mounted on Digital Signal Processor (DSP) equipment, and the control performance was verified experimentally. As a result of the measurement at the 3 operational rpms, the 7th multiple component of pump operating frequency decreased by 1.93 dB, 4.43 dB, 5.15 dB per rpm, and the 12th multiple component decreased by 6.67 dB, 2.34 dB, 4.28 dB per rpm. And overall Sound Pressure Level (SPL) decreased by 0.84 dB, 2.58 dB, 1.48 dB by rpm.

Effects of continuous force application for extrusive tipping movement on periapical root resorption in the rat mandibular first molar

  • Matsumoto, Yoshiro;Sringkarnboriboon, Siripen;Ono, Takashi
    • The korean journal of orthodontics
    • /
    • v.48 no.5
    • /
    • pp.339-345
    • /
    • 2018
  • Objective: The purpose of this study was to clarify the effects of continuous force application for extrusive tipping movement and occlusal interference on periapical root resorption in the rat mandibular first molar. Methods: We constructed an appliance comprising a titanium screw implant with a cobalt-chromium post as the anchorage unit and a nickel-titanium closed coil spring (50 cN) as the active unit. Force was applied on the mandibular left first molar of rats for 8 (n = 10) and 15 days (n = 10; experimental groups), with the tooth in occlusion. Five rats were included as a non-treated control group to examine the body effect of the appliance. Active root resorption lacunae, identified using tartrate-resistant acid phosphatase, were evaluated in terms of the length, depth, and area. Results: The rat mandibular first molars were mesially tipped and extruded in the occlusal direction. This mesio-occlusal tipping movement and occlusion resulted in the formation of a compression zone and active root resorption lacunae in the distoapical third of the distal roots. However, there was no significant difference in the amount of root resorption between the two experimental groups. The control group did not exhibit any active root resorption lacunae. Conclusions: Periapical root resorption was induced by continuous extrusive tipping force and occlusal interference in rat mandibular molars. These data suggest that we orthodontists had better take care not to induce occlusal interference during our orthodontic treatment.

Active Systemic Anaphylaxis Test of Purified Bee Venom(Apis mellifera L.) (정제봉독의 아나필락시스 쇼크 반응 연구)

  • Han, Sang Mi;Hong, In Phyo;Woo, Soon Ok;Kim, Se Gun;Jang, Hye Ri;Park, Kyun Kyu;Chang, Young Chae
    • Korean Journal of Pharmacognosy
    • /
    • v.46 no.3
    • /
    • pp.203-207
    • /
    • 2015
  • This study was performed to examine the antigenic potential of purified bee venom (Apis mellifera L., PBV) collected using bee venom collector. Antigenic potential of PBV was examined by active systemic anaphylaxis (ASA) in guinea pigs. PBV was subcutaneously administered at 0.025 and 0.05 mg/kg and also as a suspension with adjuvant (Freund's complete adjuvant, FCA). Ovalbumin (OVA) as a suspension with adjuvant was used to introduce positive control response. In the weight measurement and clinical observation, experimental groups didn't show any significant changes compared with control group. In the autopsy of body, the abnormalities of lung were detected only in the positive control. In the ASA test, experimental groups didn't show any symptoms of anaphylaxis like piloerection, hyperpnea and staggering gait. These results suggested that PBV didn't have antigenic potential in guinea pig.

Aeromechanical stability analysis and control of helicopter rotor blades (헬리콥터 회전날개깃의 안정성 해석과 제어)

  • Kim, J.S.;Chattopadhyay, Aditi
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.9 no.1
    • /
    • pp.59-69
    • /
    • 2001
  • The rotor blade is modeled using a composite box beam with arbitrary wall. The active constrained damping layers are bonded to the upper and lower surfaces of the box beam to provide active and passive damping. A finite element model, based on a hybrid displacement theory, is used in the structural analysis. The theory is capable of accurately capturing the transverse shear effects in the composite primary structure, the viscoelastic and the piezoelectric layers within the ACLs. A reduced order model is derived based on the Hankel singular value. A linear quadratic Gaussian (LQG) controller is designed based on the reduced order model and the available measurement output. However, the LQG control system fails to stabilize the perturbed system although it shows good control performance at the nominal operating condition. To improve the robust stability of LQG controller, the loop transfer recovery (LTR) method is applied. Numerical results show that the proposed controller significantly improves rotor aeromechanical stability and suppresses rotor response over large variations in rotating speed by increasing lead-lag modal damping in the coupled rotor-body system.

  • PDF