• 제목/요약/키워드: Active Sensor

검색결과 912건 처리시간 0.029초

Active vibration control of smart composite structures in hygrothermal environment

  • Mahato, P.K.;Maiti, D.K.
    • Structural Engineering and Mechanics
    • /
    • 제44권2호
    • /
    • pp.127-138
    • /
    • 2012
  • The composite materials may be exposed to environmental (thermal or hygral or both) condition during their service life. The effect of environmental condition is usually adverse from the point of view of design of composite structures. In the present research study the effect of hygrothermal condition on the design of laminated composite structures is investigated. The active fiber composite (AFC) which may be utilized as actuator or sensor is considered in the present analysis. The sensor layer is used to sense the level of response of the composite structures. The sensed voltage is fed back to the actuator through the controller. In this study both displacement and velocity feedback controllers are employed to reduce the response of the composite laminate within acceptable limit. The Newmark direct time integration scheme is employed along with modal superposition method to improve the computational efficiency. It is observed from the numerical study that the laminated composite structures become weak in the presence of hygrothermal load. The response of the structure can be brought to the acceptable level once the AFC layer is activated through the feedback loop.

위상 보상된 속도 센서를 이용한 6자유도 능동 방진 시스템의 개발 (Development of the Six Degree-of-Freedom Active Vibration Isolation System by Using a Phase Compensated Velocity Sensor)

  • 김용대;김상유;박기환
    • 대한기계학회논문집A
    • /
    • 제33권11호
    • /
    • pp.1347-1352
    • /
    • 2009
  • Magnetic force driven six degree-of-freedom active vibration isolation system is developed. The velocity sensor using an electromagnetic principle that is commonly used in the vibration control is investigated since its phase lead characteristic causes an instability problem for a low frequency vibration. A lag-type compensator is adopted to reduce the phase lead and the stability test is performed by using a Bode analysis. The performance of the AVIS is validated by comparing with the passive isolation system by using the frequency responses.

Fault-tolerant control system for once-through steam generator based on reinforcement learning algorithm

  • Li, Cheng;Yu, Ren;Yu, Wenmin;Wang, Tianshu
    • Nuclear Engineering and Technology
    • /
    • 제54권9호
    • /
    • pp.3283-3292
    • /
    • 2022
  • Based on the Deep Q-Network(DQN) algorithm of reinforcement learning, an active fault-tolerance method with incremental action is proposed for the control system with sensor faults of the once-through steam generator(OTSG). In this paper, we first establish the OTSG model as the interaction environment for the agent of reinforcement learning. The reinforcement learning agent chooses an action according to the system state obtained by the pressure sensor, the incremental action can gradually approach the optimal strategy for the current fault, and then the agent updates the network by different rewards obtained in the interaction process. In this way, we can transform the active fault tolerant control process of the OTSG to the reinforcement learning agent's decision-making process. The comparison experiments compared with the traditional reinforcement learning algorithm(RL) with fixed strategies show that the active fault-tolerant controller designed in this paper can accurately and rapidly control under sensor faults so that the pressure of the OTSG can be stabilized near the set-point value, and the OTSG can run normally and stably.

능동 엔진 마운트 제어용 Active Linear Actuator를 이용한 외팔보 능동진동제어 실험 (Active Vibration Control Experiment of Cantilever Using Active Linear Actuator for Active Engine Mount)

  • 양동호;곽문규;김정훈;박운환;심호석
    • 한국소음진동공학회논문집
    • /
    • 제20권12호
    • /
    • pp.1176-1182
    • /
    • 2010
  • Vibrations caused by automobile engine are absorbed mostly by a passive-type engine mount. However, user specifications for automobile vibrations require more stringent conditions and higher standard. Hence, active-type engine mount have been developed to cope with such specifications. The active-type engine mount consists of sensor, actuator and controller where a control algorithm is implemented. The performance of the active engine mount depends on the control algorithm if the sensor and actuator satisfies the specification. The control algorithm should be able to suppress persistent vibrations caused by the engine which are related to engine revolution. In this study, three control algorithms are considered for suppressing persistent vibrations, which are the positive position feedback control algorithm, the strain-rate feedback control algorithm, and the modified higher harmonic control algorithm. Experimental results show that all the control algorithms considered in this study are effective in suppressing resonant vibrations but the modified higher harmonic controller is the most effective controller for non-resonant vibrations.

가속도 피이드백 제어기를 이용한 세탁기의 능동진동제어 (Active Vibration Control of Washing Machine by Acceleration Feedback Controller)

  • 김승기;곽문규;양동호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.28-31
    • /
    • 2014
  • This paper is concerned with the active vibration control of washing machine. To this end, a new control algorithm utilizing an acceleration signal as a sensor signal is newly developed based on the principle of a dynamic absorber. The resulting control algorithm was implemented digitally on the DSP board. The accelerometer and the active linear actuator were used as sensor and actuator for the active vibration control of washing machine. Experimental results show that the proposed control algorithm can be effectively used for a controller which uses an accelerometer.

  • PDF

단일 전류센서를 갖는 저가의 단상 반브릿지 APF (Low-cost Single-Phase HAIf-bridge Active Power Filter with One Current Sensor)

  • 김길동;신정렬;이우동;박현준;김희중
    • 한국철도학회논문집
    • /
    • 제7권3호
    • /
    • pp.173-179
    • /
    • 2004
  • This paper describes a low-cost single-phase active power filter, which consists of a half-bridge PWM inverter with a simple control circuit. In order to verify the performance of proposed active power filter, many computer simulations with EMTP codes and experimental works with a hardware prototype were done. Both results confirm that the proposed active power filter shows excellent performance to eliminate the harmonics generated in the single-phase non-linear load. The active power filter has advantage of low implementation cost and compact size, using a half-bridge inverter and a simple control circuit with only one current sensor. So, it can be fabricated as a plug-in type. This paper shows the necessity and a good possibility to apply such advantage to the electric railway system.

PVDF 필름 형상최적화에 의한 복합재료 쉘의 진동제어 시스템 설계 (Vibration Control System Design of Composite Shell by Profile Optimization of PVDF film)

  • 황준석;목지원;김승조
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.228-231
    • /
    • 2000
  • The active vibration control of laminated composite shell has been performed with the optimized sensor/actuator system. PVDF film is used fur the material of sensor/actuator. Finite element method is utilized to model the whole structure including the piezoelectric sensor/actuator system, The distributed selective modal sensor/actuator system is established to prevent the adverse effect of spillover. In the finite element discretization process, the nine-node shell element with five nodal degrees of freedoms is used. Electrode patterns and lamination angles of sensor/actuator are optimized using genetic algorithm. Sensor is designed to minimize the observation spillover, and actuator is designed to minimize the system energy of the control modes under a given initial condition. Modal sensor/actuator profiles are optimized for the first and the second modes suppression of singly curved cantilevered composite shell structure. Discrete LQG method is used as a control law. The real time vibration control with profile optimized sensor/actuator system has been performed. Experimental result shows successful performance of the integrated structure for the active vibration control.

  • PDF

Multi-scale wireless sensor node for health monitoring of civil infrastructure and mechanical systems

  • Taylor, Stuart G.;Farinholt, Kevin M.;Park, Gyuhae;Todd, Michael D.;Farrar, Charles R.
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.661-673
    • /
    • 2010
  • This paper presents recent developments in an extremely compact, wireless impedance sensor node (the WID3, $\underline{W}$ireless $\underline{I}$mpedance $\underline{D}$evice) for use in high-frequency impedance-based structural health monitoring (SHM), sensor diagnostics and validation, and low-frequency (< ~1 kHz) vibration data acquisition. The WID3 is equipped with an impedance chip that can resolve measurements up to 100 kHz, a frequency range ideal for many SHM applications. An integrated set of multiplexers allows the end user to monitor seven piezoelectric sensors from a single sensor node. The WID3 combines on-board processing using a microcontroller, data storage using flash memory, wireless communications capabilities, and a series of internal and external triggering options into a single package to realize a truly comprehensive, self-contained wireless active-sensor node for SHM applications. Furthermore, we recently extended the capability of this device by implementing low-frequency analog-to-digital and digital-to-analog converters so that the same device can measure structural vibration data. The compact sensor node collects relatively low-frequency acceleration measurements to estimate natural frequencies and operational deflection shapes, as well as relatively high-frequency impedance measurements to detect structural damage. Experimental results with application to SHM, sensor diagnostics and low-frequency vibration data acquisition are presented.

FxLMS를 이용한 단일 센서기반 능동 반향음 제어 시스템 (A single sensor based active reflection control system using FxLMS algorithm)

  • 김재필;지유나;박영철;서영수
    • 한국음향학회지
    • /
    • 제36권1호
    • /
    • pp.57-63
    • /
    • 2017
  • 본 논문에서는 FxLMS(Filtered-x Least Mean Square) 알고리즘을 이용한 단일 센서 기반의 능동 반향음 제어 알고리즘을 제안한다. 제안 알고리즘은 먼저 단일 센서 입력 신호로부터 입사음과 반향음을 분리하고, 분리된 신호들을 사용하여 반향음과 반대 위상을 갖는 제어 신호를 생성한다. 제어 신호는 센서 위치에서 반향음과 중첩되어 반향음의 음압을 감소시킨다. 적절한 신호 분리를 위해 반향 음향 경로와 제어 음향 경로가 필요하며 이는 swept sine 신호를 이용해 측정한 음향 응답으로부터 사전에 구할 수 있다. 효용성을 검증하기 위해 DSP(Digital Signal Processing) 보드를 사용하여 제안된 알고리즘을 실시간으로 구현하였으며, 공기 중 음향 덕트 환경에서 1 kHz 버스트 신호에 대해 반향음이 11.6 dB 감소함을 확인 하였다.

능동형 센서의 깊이 정보를 이용한 3D 객체 생성 (3D object generation based on the depth information of an active sensor)

  • 김상진;유지상;이승현
    • 한국컴퓨터산업학회논문지
    • /
    • 제7권5호
    • /
    • pp.455-466
    • /
    • 2006
  • 본 논문에서는 능동형 센서를 이용하여 실사 객체에 대한 깊이 정보 및 칼라 정보를 획득하고 획득된 데이터를 이용하여 3D 객체를 생성하였다. 길이 정보를 획득하는 방법은 능동형 센서 모듈을 내장한 $Zcam^{TM}$ 카메라를 이용하였다. <중략>세 번째, 세부 파라미터를 조절하여 깊이 정보의 왜곡을 보정하고 보정된 깊이 정보를 이용하여 3D 메쉬 모델을 생성한 후, 서로 인접한 외곽 점들을 연결하여 완전한 객체 메쉬 모델을 만든다. 최종적으로, 완성된 객체 메쉬 모델에 칼라 영상 데이터의 칼라 값을 적용해 매핑 처리를 수행함으로써 3D 객체를 생성하였다. 실험을 통해 능동형 센서가 장착된 카메라로 획득한 데이터만으로 3D 객체를 생성할 수 있다는 가능성을 제시하였으며, 3차원 전용 스캐너를 이용한 것보다 데이터 획득이 간편하고 용이함을 알 수 있었다.

  • PDF