• Title/Summary/Keyword: Active Range Sensor

Search Result 109, Processing Time 0.042 seconds

Capacitive force sensor

  • Miyazawa, S.;Usui, Y.;Suzuki, M.;Baba, S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.611-615
    • /
    • 1994
  • In this paper, the sensitivity, linearity and temperature drift characteristics of various capacitive force sensors are evaluated and compared using new experimental methods. In particular, two designs were employed to reduce temperature drift. Both types of sensor use high-sensitivity Al coated PET film, and their externals are miniaturized. The first has a layered design consisting of two dielectric substances with different temperature characteristics. The prototype of this design had a temperature drift of only 0.1% of the sensor's capacity in the 20-80.deg. C range. The second type uses both a dummy sensor ind an active sensor with the same characteristics. The temperature drift of the prototype was one-fifth the temperature drift of a single sensor.

  • PDF

Spatial Variability of Soil Properties using Nested Variograms at Multiple Scales

  • Chung, Sun-Ok;Sudduth, Kenneth A.;Drummond, Scott T.;Kitchen, Newell R.
    • Journal of Biosystems Engineering
    • /
    • v.39 no.4
    • /
    • pp.377-388
    • /
    • 2014
  • Purpose: Determining the spatial structure of data is important in understanding within-field variability for site-specific crop management. An understanding of the spatial structures present in the data may help illuminate interrelationships that are important in subsequent explanatory analyses, especially when site variables are correlated or are a combined response to multiple causative factors. Methods: In this study, correlation, principal component analysis, and single and nested variogram models were applied to soil electrical conductivity and chemical property data of two fields in central Missouri, USA. Results: Some variables that were highly correlated, or were strongly expressed in the same principal component, exhibited similar spatial ranges when fitted with a single variogram model. However, single variogram results were dependent on the active lag distance used, with short distances (30 m) required to fit short-range variability. Longer active lag distances only revealed long-range spatial components. Nested models generally yielded a better fit than single models for sensor-based conductivity data, where multiple scales of spatial structure were apparent. Gaussian-spherical nested models fit well to the data at both short (30 m) and long (300 m) active lag distances, generally capturing both short-range and long-range spatial components. As soil conductivity relates strongly to profile texture, we hypothesize that the short-range components may relate to the scale of erosion processes, while the long-range components are indicative of the scale of landscape morphology. Conclusion: In this study, we investigated the effect of changing active lag distance on the calculation of the range parameter. Future work investigating scale effects on other variogram parameters, including nugget and sill variances, may lead to better model selection and interpretation. Once this is achieved, separation of nested spatial components by factorial kriging may help to better define the correlations existing between spatial datasets.

Transmitted Noise Reduction of Piezoelectric Smart Panels using Passive/Active Method in Wide Range frequency (수동/능동적 방법을 혼용한 압전지능패널의 광대역 전달 소음저감성능)

  • 이중근;박우철
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.2
    • /
    • pp.73-79
    • /
    • 2001
  • In this paper, the transmitted noise reduction performance of piezoelectric smart panels is experimentally studied. The proposed piezoelectric smart panels are comprised of plate structure on which piezoelectric sensor/actuators are bonded and sound absorbing material is provided. It is a combination of passive and active approaches utilizing a passive effect at high frequencies and an active effect at low frequencies. To prove the concept of piezoelectric smart panels, an acoustic measurement experiment is performed. An acoustic tunnel is designed and its acoustic characteristics are tested. Below 800Hz, the tunnel exhibits a plane wave guide characteristics. When an absorbing material is bonded on a single plate, a remarkable transmitted noise reduction in mid frequency range is observed except the first resonance frequency. By enabling the active control of single smart panel with negative feedback control. about 10dB noise reduction is achieved at the resonance frequencies. The double smart panel got 4dB at the first resonance frequency and has more potential to reduce the transmitted noise in a wide range frequency. Piezoelectric smart panels incorporating passive absorbing material and active piezoelectric devices is a promising technology for noise reduction in a wide range frequency.

  • PDF

A CMOS Bandgap Reference Voltage Generator for a CMOS Active Pixel Sensor Imager

  • Kim, Kwang-Hyun;Cho, Gyu-Seong;Kim, Young-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.2
    • /
    • pp.71-75
    • /
    • 2004
  • This paper proposes a new bandgap reference (BGR) circuit which takes advantage of a cascode current mirror biasing to reduce the V$\_$ref/ variation, and sizing technique, which utilizes two related ratio numbers k and N, to reduce the PNP BJT area. The proposed BGR is designed and fabricated on a test chip with a goal to provide a reference voltage to the 10 bit A/D(4-4-4 pipeline architecture) converter of the CMOS Active Pixel Sensor (APS) imager to be used in X-ray imaging. The basic temperature variation effect on V$\_$ref/ of the BGR has a maximum delta of 6 mV over the temperature range of 25$^{\circ}C$ to 70$^{\circ}C$. To verify that the proposed BGR has radiation hardness for the X-ray imaging application, total ionization dose (TID) effect under Co-60 exposure conditions has been evaluated. The measured V$\_$ref/ variation under the radiation condition has a maximum delta of 33 mV over the range of 0 krad to 100 krad. For the given voltage, temperature, and radiation, the BGR has been satisfied well within the requirement of the target 10 bit A/D converter.

Comparison of Active Sonar Target Positioning Performance and Optimal Sensor Arrangement (능동 소나 위치 추정 성능 비교 및 최적 수신망 배치)

  • 박치현;홍우영;고한석;김인익
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.224-232
    • /
    • 2003
  • In this paper, efficient deployment method of sensors and target positioning performance with respect to measurement error are dealt with. Active sonar can be categorized into Monostatic, Bistatic, Multistatic sonar, and characteristics of respective sonar are different. Assuming that each sensor can receive range and angular information, we compare the performance of Monostatic, Bistatic, and Multistatic systems. And we suggest Weighted least square (WLS) which gives the weight to former case, LS. In particular. adopting suggested method we investigate the target positioning performance according to number of sensor, distance from transmitter to receiver, and propose efficient arrangement rule for Multistatic sonar configurations. According to the experimental results, RMSE of Multistatic sonar is found to be superior to Monostatic and Bistatic by 35.98%. 37.45% respectively, and WLS is superior to LS approximately by 7.4% in average. Furthermore, as the difference of respective sensor's variance is large, it is observed that the improvement ratio of target positioning performance is increased.

Controlling Photo-Environment of Ginseng Cultivation Using Agricultural Weather Sensor Data (농업기상 센서 데이터를 활용한 인삼재배 광환경 조절 연구)

  • Park, Jeonghwan;Song, Soobin;Seo, Sang Young;Jeon, Sook Lye
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.3
    • /
    • pp.180-186
    • /
    • 2022
  • Photosynthetically active radiation flux density (PPFD) and daily light integral (DLI) values related to plant photosynthesis were obtained using the sunlight time and insolation data points in the agricultural weather sensor data for Jinan-gun, Jeollabuk-do, Korea from 2016 to 2020. The objective was to optimize the photo-environmental conditions for cultivating ginseng. The range of average monthly sunshine duration was 395.5-664.1 min, with the longest duration observed in June. The range of average annual accumulated daily insolation was 11.98-17.65 MJ·m-2. The range of average daily external DLI calculated from the insolation and solar time data was 22.3-36.1 mol·m-2·d-1, and the annual cumulative DLI was 8,156-13,175 mol·m-2·d-1. Both the insolation and DLI values were the highest in 2016 and lowest in 2020. Based on the PPFD required for ginseng growth (111-185 µmol·m-2·s-1), the monthly average daily DLI and monthly cumulative DLI were 3.51-5.87 and 82-228 mol·m-2·d-1, respectively. The range of five-year average value for the external monthly cumulative DLI was 298-1,459 mol·m-2·d-1, and the monthly cumulative DLI values when a black double shading film and blue-white shading film were applied were 101-496 and 36-175 mol·m-2·d-1, respectively. A comparative analysis of DLI values indicated that shading was required to ginseng growth throughout the year under natural light. When the black double shading film was used, shading was required from March to October. When the blue-white shading film was applied from April to August, (i.e., the period with active ginseng growth) the appropriate DLI for ginseng growth could be continuously maintained. Regional weather differences due to climate change are gradually increasing, and even in one region, monthly and cumulative DLI values are different every year. Therefore, in order to implement a precise agricultural environment for ginseng cultivation, precise analysis and continuous research using agricultural weather sensor big data is required.

High-Speed CMOS Binary Image Sensor with Gate/Body-Tied PMOSFET-Type Photodetector

  • Choi, Byoung-Soo;Jo, Sung-Hyun;Bae, Myunghan;Kim, Jeongyeob;Choi, Pyung;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.332-336
    • /
    • 2014
  • In this paper, we propose a complementary metal oxide semiconductor (CMOS) binary image sensor with a gate/body-tied (GBT) PMOSFET-type photodetector for high-speed operation. The GBT photodetector of an active pixel sensor (APS) consists of a floating gate ($n^+$-polysilicon) tied to the body (n-well) of the PMOSFET. The p-n junction photodiode that is used in a conventional APS has a good dynamic range but low photosensitivity. On the other hand, a high-gain GBT photodetector has a high level of photosensitivity but a narrow dynamic range. In addition, the pixel size of the GBT photodetector APS is less than that of the conventional photodiode APS because of its use of a PMOSFET-type photodetector, enabling increased image resolution. A CMOS binary image sensor can be designed with simple circuits, as a complex analog to digital converter (ADC) is not required for binary processing. Because of this feature, the binary image sensor has low power consumption and high speed, with the ability to switch back and forth between a binary mode and an analog mode. The proposed CMOS binary image sensor was simulated and designed using a standard CMOS $0.18{\mu}m$ process.

Design of Active Control Engine Mount Using Direct Drive Electrodynamic Actuator (전동식 직접 구동형 능동 엔진 마운트의 설계)

  • Park, Hyun-Ki;Lee, Bo-Ha;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1106-1111
    • /
    • 2007
  • This paper is focused on design of a new active control engine mount (ACM), which is compact in size and cost effective. The ACM, consisting of an electrodynamic actuator as the active element, flat springs and a sliding ball joint, is different in structure from the previous ACM designs based on the conventional hydraulic engine mount. Dynamic characteristics of the proposed ACM are extensively investigated before a prototype ACM, which meets the design specifications, is built in the laboratory. For cost effectiveness, a feed-forward control algorithm without a feedback sensor is used for reduction of the transmitted force through the ACM from the engine. The prototype ACM is then harmonic-tested with a rubber testing machine for verification of its control performance as well as adequacy of modeling. Experimental results show that the proposed ACM is capable of reducing the transmitted force by 20 dB up to the frequency range of 60 Hz.

  • PDF

On Sensor Network Routing for Cloaking Source Location Against Packet-Tracing

  • Tscha, Yeong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3B
    • /
    • pp.213-224
    • /
    • 2009
  • Most of existing routing methods in wireless sensor networks to counter the local eavesdropping-based packet-tracing deal with a single asset and suffer from the packet-delivery latency as they prefer to take a separate path of many hops for each packet being sent. Recently, the author proposed a routing method, GSLP-w(GPSR-based Source-Location Privacy with crew size w), that enhances location privacy of the packet-originating node(i.e., active source) in the presence of multiple assets, yet taking a path of not too long. In this paper, we present a refined routing(i.e., next-hop selection) procedure of it and empirically study privacy strength and delivery latency with varying the crew size w(i.e., the number of packets being sent per path). It turns out that GSLP-w offers the best privacy strength when the number of packets being sent per path is randomly chosen from the range [$1,h_{s-b}/4$] and that further improvements on the privacy are achieved by increasing the random walk length TTLrw or the probability prw that goes into random walk(where, $h_{s-b}$ is the number of hops of the shortest path between packet-originating node s and sink b).

Development of an Inductive Proximity Sensor in Active Magnetic Bearing System for Magnetically Suspended Centrifugal Blood Pumps (능동 자기 베어링 방식의 자기 부상 원심성 혈액 펌프를 위한 유도성 근접 센서 개발)

  • Kim, H.I.;Kim, H.C.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.245-246
    • /
    • 1998
  • AMB(Active Magnetic Bearing) systems are popularly used in various areas. In biomedical engineering applications it is a key part of magnetically suspended rotary blood pumps. The special advantage of AMBs is that they enable the rotor to revolve with no physical contact and provide rotary blood pumps with better performances such as low hemolysis level. Fundamentally, AMB systems consist of three parts, proximity sensors for distance detection, microprocessor for control algorithm and power amplifiers for actuating electromagnets. We have developed an inductive type proximity sensor with satisfactory characteristics that can be used in AMB systems. Frequency response was flat at least up to 10 kHz and sensitivity, resolution$(>5{\mu}m)$ and sensing range(<5mm) of the sensor could be adjustable for various purposes. The characteristics of the completed model showed to have satisfactory behaviors compared with the commercially available ones that already appeared to have reliable behaviors in AMB systems.

  • PDF