DOI QR코드

DOI QR Code

Spatial Variability of Soil Properties using Nested Variograms at Multiple Scales

  • Chung, Sun-Ok (Dept. of Biosystems Machinery Engineering, Chungnam National University) ;
  • Sudduth, Kenneth A. (USDA-ARS Cropping Systems and Water Quality Research Unit) ;
  • Drummond, Scott T. (USDA-ARS Cropping Systems and Water Quality Research Unit) ;
  • Kitchen, Newell R. (USDA-ARS Cropping Systems and Water Quality Research Unit)
  • Received : 2014.08.05
  • Accepted : 2014.11.09
  • Published : 2014.12.01

Abstract

Purpose: Determining the spatial structure of data is important in understanding within-field variability for site-specific crop management. An understanding of the spatial structures present in the data may help illuminate interrelationships that are important in subsequent explanatory analyses, especially when site variables are correlated or are a combined response to multiple causative factors. Methods: In this study, correlation, principal component analysis, and single and nested variogram models were applied to soil electrical conductivity and chemical property data of two fields in central Missouri, USA. Results: Some variables that were highly correlated, or were strongly expressed in the same principal component, exhibited similar spatial ranges when fitted with a single variogram model. However, single variogram results were dependent on the active lag distance used, with short distances (30 m) required to fit short-range variability. Longer active lag distances only revealed long-range spatial components. Nested models generally yielded a better fit than single models for sensor-based conductivity data, where multiple scales of spatial structure were apparent. Gaussian-spherical nested models fit well to the data at both short (30 m) and long (300 m) active lag distances, generally capturing both short-range and long-range spatial components. As soil conductivity relates strongly to profile texture, we hypothesize that the short-range components may relate to the scale of erosion processes, while the long-range components are indicative of the scale of landscape morphology. Conclusion: In this study, we investigated the effect of changing active lag distance on the calculation of the range parameter. Future work investigating scale effects on other variogram parameters, including nugget and sill variances, may lead to better model selection and interpretation. Once this is achieved, separation of nested spatial components by factorial kriging may help to better define the correlations existing between spatial datasets.

Keywords

References

  1. Bakhsh, A., D. B. Jaynes, T. S. Colvin and R. S. Kanwar. 2000. Spatio-temporal analysis of yield variability for a corn-soybean field in Iowa. Transactions of the ASAE 43(1):31-38. https://doi.org/10.13031/2013.2684
  2. Batista, A. C., E. A. Ferreira da Silva, M. C. C. Azevedo, A. J. Sousa and E. Cardoso Fonseca. 2002. Soil data analysis from central Portugal by principal component analysis and geostatistical techniques. Geochemistry, Exploration, Environment, Analysis 2:15-25. https://doi.org/10.1144/1467-787302-002
  3. Birrell, S. J., K. A. Sudduth and N. R. Kitchen. 1996. Nutrient mapping implications of short-range variability. In: Proceedings of the 3rd International Conference on Precision Agriculture, eds. P.C. Robert et al., pp. 207-216. Madison, WI: ASA, CSSA and SSSA.
  4. Borgelt, S. C., R. E. Wieda and K. A. Sudduth. 1997. Geostatistical analysis of soil chemical properties from nested grids. Applied Engineering in Agriculture 13(4):477-483. https://doi.org/10.13031/2013.21631
  5. Brown, J. R. and R. R. Rodriguez. 1983. Soil testing in Missouri: A guide for conducting soil tests in Missouri, Univ. of Missouri Ext. Circ. 923. Columbia, Missouri: University of Missouri.
  6. Cahn, M. D., J. W. Hummel and B. H. Brouer. 1994. Spatial analysis of soil fertility for site-specific crop management. Soil Science Society of America Journal 58:1240-1248. https://doi.org/10.2136/sssaj1994.03615995005800040035x
  7. Chung, S. O., I. K. Jung, J. H. Sung, K. A. Sudduth and S. T. Drummond. 2008. Analysis of spatial variability in a Korean paddy field using median polish detrending. Journal of Biosystems Engineering 33(5):362-369. https://doi.org/10.5307/JBE.2008.33.5.362
  8. Chung, S. O., K. A. Sudduth and Y. C. Chang. 2005. Path analysis of factors limiting crop yield in rice paddy and upland corn fields. Journal of Biosystems Engineering 30(1):45-55. https://doi.org/10.5307/JBE.2005.30.1.045
  9. Doolittle, J. A., K. A. Sudduth, N. R. Kitchen and S. J. Indorante. 1994. Estimating depths to claypans using electromagnetic induction methods. Journal of Soil and Water Conservation 49:572-575.
  10. Drummond, S. T., K. A. Sudduth, A. Joshi, S. J. Birrell and N. R. Kitchen. 2003. Statistical and neural methods for site-specific yield prediction. Transactions of the ASAE 46(1):5-14.
  11. Goovaerts, P. 1992. Factorial kriging analysis: a useful tool for exploring the structure of multivariate spatial soil information. Journal of Soil Science 43:597-619. https://doi.org/10.1111/j.1365-2389.1992.tb00163.x
  12. Goovaerts, P. 1998. Geostatistical tools for characterizing the spatial variability of microbiological and physio-chemical soil properties. Biology and Fertility of Soils 27:315-334. https://doi.org/10.1007/s003740050439
  13. Goovaerts, P. and R. Webster. 1994. Scale-dependent correlation between topsoil copper and cobalt concentrations in Scotland. European Journal of Soil Science 45:79-95. https://doi.org/10.1111/j.1365-2389.1994.tb00489.x
  14. Jensen, J. R. 1996. Image enhancement. In: Introductory Digital Image Processing: A Remote Sensing Perspective, eds. K.C. Clarke, pp. 172-179. Upper Saddle River, New Jersey: Prentice-Hall, Inc.
  15. Journel, A. G. and C. J. Huijbregts. 1978. Mining Geostatistics. London, UK: Academic Press.
  16. Kitchen, N. R., K. A. Sudduth and S. T. Drummond. 1999. Electrical conductivity as a crop productivity measure for claypan soils. Journal of Production Agriculture 12(4):607-617. https://doi.org/10.2134/jpa1999.0607
  17. Kitchen, N. R., K. A. Sudduth, D. B. Myers, R. E. Massey, E. J. Sadler, R. N. Lerch, J. W. Hummel and H. L. Palm. 2005. Development of a conservation-oriented precision agriculture system: Crop production assessment and plan implementation. Journal of Soil and Water Conservation 60(6):421-430.
  18. Mathsoft. 2000. S+SpatialStats Version 1.5 Supplement. Seattle, Washington: MathSoft, Inc.
  19. McBratney, A. B. and M. J. Pringle. 1999. Estimating average and proportional variograms of soil properties and their potential use in precision agriculture. Precision Agriculture 1(2):125-152. https://doi.org/10.1023/A:1009995404447
  20. McBratney, A. B. and R. Webster. 1986. Choosing functions for semi-variograms of soil properties and fitting them to sampling estimates. Journal of Soil Science 37:617-639. https://doi.org/10.1111/j.1365-2389.1986.tb00392.x
  21. Oliver, M. A., R. Webster and K. Slocum. 2000. Filtering SPOT imagery by kriging analysis. International Journal of Remote Sensing 21(4):735-752. https://doi.org/10.1080/014311600210542
  22. Rodgers, S. E. and M. A. Oliver. 2007. A geostatistical analysis of soil, vegetation, and image data characterizing land surface variation. Geographical Analysis 39:195-216. https://doi.org/10.1111/j.1538-4632.2007.00701.x
  23. Sudduth, K. A., S. T. Drummond, S. J. Birrell and N. R. Kitchen. 1997. Spatial modeling of crop yield using soil and topographic data. In Precision agriculture '97: Spatial variability in soil and crop, pp. 439-447. Oxford, UK: BIOS Scientific Publishers Ltd.
  24. Sudduth, K. A., S. T. Drummond and N. R. Kitchen. 2001. Accuracy issues in electromagnetic induction sensing of soil electrical conductivity for precision agriculture. Computers and Electronics in Agriculture 31:239-264. https://doi.org/10.1016/S0168-1699(00)00185-X
  25. Sudduth, K. A., N. R. Kitchen, G. A. Bollero, D. G. Bullock and W. J. Wiebold. 2003. Comparison of electromagnetic induction and direct sensing of soil electrical conductivity. Agronomy Journal 95(3):472-482. https://doi.org/10.2134/agronj2003.0472
  26. Tsunemori, T. S., C. N. Washmon, M. L. Stone, J. B. Solie and W. R. Raun. 2000. Optimum field-of-view for mapping optically sensed data in winter wheat. ASAE paper No.001007. St. Joseph, MI: ASAE.
  27. Van Meirvenne, M., K. Maes and G. Hofman. 2003. Three dimensional variability of soil nitrate-nitrogen in an agricultural field. Biology and Fertility of Soils 37: 147-153.
  28. Webster, R. and S. Nortcliff. 1984. Improved estimation of micro nutrients in hectare plots of the Sonning series. Journal of Soil Science 35:667-672. https://doi.org/10.1111/j.1365-2389.1984.tb00623.x
  29. Webster, R. and M.A. Oliver. 1990. Statistical methods in soil and land resource survey. New York, NY, USA: Oxford University Press.