• Title/Summary/Keyword: Active Mechanical Equipment

Search Result 37, Processing Time 0.03 seconds

A Study on Linear Matrix Inequalities Robust Active Suspension Control System Design Algorithm

  • Park, Jung-Hyen
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.1
    • /
    • pp.105-109
    • /
    • 2008
  • A robust optimal control system design algorithm in active suspension equipment adopting linear matrix inequalities control system design theory is presented. The validity of the linear matrix inequalities robust control system design in active suspension system through the numerical examples is also investigated.

A study on structural stability of Backgrinding equipment using finite element analysis (유한요소해석을 이용한 백그라인딩 장비의 구조안정성 연구)

  • Wi, Eun-Chan;Ko, Min-Sung;Kim, Hyun-Jeong;Kim, Sung-Chul;Lee, Joo-Hyung;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.58-64
    • /
    • 2020
  • Lately, the development of the semiconductor industry has led to the miniaturization of electronic devices. Therefore, semiconductor wafers of very thin thickness that can be used in Multi-Chip Packages are required. There is active research on the backgrinding process to reduce the thickness of the wafer. The backgrinding process polishes the backside of the wafer, reducing the thickness of the wafer to tens of ㎛. The equipment that performs the backgrinding process requires ultra-precision. Currently, there is no full auto backgrinding equipment in Korea. Therefore, in this study, ultra-precision backgrinding equipment was designed. In addition, finite element analysis was conducted to verify the equipment design validity. The deflection and structural stability of the backgrinding equipment were analyzed using finite element analysis.

A Study on Intelligent Decentralized Active Suspension Control System with Descriptor LMI Design Method

  • Park, Jung-Hyen
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.2
    • /
    • pp.198-203
    • /
    • 2008
  • An Intelligent optimal control system design algorithm in active suspension equipment adopting linear matrix inequalities control system design theory with representing by descriptor system form is presented. The validity of the linear matrix inequalities intelligent decentralized control system design with representing by descriptor system form in active suspension system through the numerical examples is also investigated.

Remote Fault Diagnosis Method of Wind Power Generation Equipment Based on Internet of Things

  • Bing, Chen;Ding, Liu
    • Journal of Information Processing Systems
    • /
    • v.18 no.6
    • /
    • pp.822-829
    • /
    • 2022
  • According to existing study into the remote fault diagnosis procedure, the current diagnostic approach has an imperfect decision model, which only supports communication in a close distance. An Internet of Things (IoT)-based remote fault diagnostic approach for wind power equipment is created to address this issue and expand the communication distance of fault diagnosis. Specifically, a decision model for active power coordination is built with the mechanical energy storage of power generation equipment with a remote diagnosis mode set by decision tree algorithms. These models help calculate the failure frequency of bearings in power generation equipment, summarize the characteristics of failure types and detect the operation status of wind power equipment through IoT. In addition, they can also generate the point inspection data and evaluate the equipment status. The findings demonstrate that the average communication distances of the designed remote diagnosis method and the other two remote diagnosis methods are 587.46 m, 435.61 m, and 454.32 m, respectively, indicating its application value.

Active Vibration Control of Three-Stage Mast of Reach Truck (리치트럭의 3단 마스트 흔들림 능동 제어)

  • Moon, Hyeon Mo;Yoo, Kwang-Seon;Ahn, Young-Chul;Mah, Pyeong-Ho;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.16 no.3
    • /
    • pp.1-7
    • /
    • 2019
  • The reach truck, which is mainly used in warehouses, is required to have high-mast to improve its working efficiency and space utilization. The high-mast takes advantage of more vertical space but severe vibrations are easily generated at the end of the high-mast. These vibrations may cause a collision or misplacement of loading location at work. In this study, the vibration characteristics of a three-stage high-mast of a reach truck are analyzed, and an active vibration controller verified through a similar experiment is designed to reduce this vibration. A similar experiment for reach truck mast verifies the performance of the active vibration controller. By applying an active vibration controller designed for a real reach truck, the operations of the reach truck are made more efficient through the reduction of the vibration amplitude.

Seismic Drop Performance for Second Shutdown Drive Mechanism Installed in Research Reactor (연구용 원자로 내부에 설치되는 이차정지구동장치의 내진낙하성능)

  • Kim, Sanghaun;Kim, Gyeong-Ho;Sun, Jongoh;Cho, Yeong-Garp;Kim, Jung-Hyun;Jung, Taeck-Hyung;Lee, Kwan-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.6_spc
    • /
    • pp.697-704
    • /
    • 2016
  • The second shutdown drive mechanism (SSDM) that is classified into seismic category I as an active mechanical equipment shall maintain the structural integrity and its designed inherent safety functions during and/or after normal operation, anticipated operational occurrences, accidents and seismic occurrences. Therefore, not only a structural integrity assessment through numerical analyses but also a qualification test by using the prototype SSDM shall be conducted to verify the adequacy of the SSDM design. This paper describes a sort of seismic qualification test of the prototype SSDM to demonstrate that the structural integrity and operability (functionality) of SSDM are maintained during and/or after seismic excitations. From the results, this paper shows that the SSDM satisfies all design requirements without any malfunctions during and after the seismic test.

Present Condition and Development of Mechanical Utility System for Modular Construction (모듈러 건축용 기계설비 시스템 현황 및 개발에 관한 연구)

  • Lee, Jae-Soo;Choi, Jun-Sok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.19-20
    • /
    • 2016
  • Domestic construction industry has experienced many difficulties as it has been on a downward. It's a way that active modular structure market to solve this problem. However, as Modular structure technical standard in Korea is in the early stages, our modular factory maufactured rate is almost 40% lower than overseas. Besides, there is less design diversity so it just applies for a few buildings like low-rise building and general group barrackes. To deal with these problems, it is essential to modulating the equipment which can improve the production rate. This will help to ensure the quality, shortening of the construction period, the reduction of labor costs. We have defined the name of segmented by each installation location of the equipment to modulating equipment. And it was examined the suitability of the modulating of the location-specific utility system. The results of the analysis are discussed on the page.

  • PDF

Modeling and Analysis of a Pendulum Dancer in Industrial Converting Machines (산업용 컨버팅 머신의 펜듈럼 덴서 모델링 및 해석)

  • Kang, Hyun-Kyoo;Shin, Kee-Hyun;Kim, Sang-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.5
    • /
    • pp.482-488
    • /
    • 2009
  • Dancer system is typically used equipment for attenuation of tension disturbances. In industrial converting machines, a composite type of dancer system is applied which is mixture of active and passive dancer. It includes feedback position control loop of roll with pendulum dancer and its characteristics is different from passive and active one. In this paper, a mathematical model of the pendulum dancer was derived including PI position feedback controller and it was analyzed by using a pole-zero map and bode plot under various conditions. It was found out that velocity, length of span and inertia were associated with the performance of regulation. It was suggested that the length of upstream span should be greater than that of the downstream and the inertia should be smaller for improvement of the performance. The results can be used for design guidelines of the industrial dancer system.

Active Vibration Control of a Precision Equipment on Flying Vehicle Structure (비행 구조물에 탑재된 정밀 기기의 능동 진동 제어)

  • Lee, Jae-Hong;Yu, Jin-Hyeong;Park, Yeong-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1912-1921
    • /
    • 1999
  • The equipments mounted on guided-missile undertake heavy vibrational disturbance. Sometimes the equipments mounted on guided-missile go wrong so that the guided-missile flies over unintended place. For the vibration isolation of the equipments mounted on guided-missile, active vibration control was performed. In the case of active vibration technique, the stiffness matrix and the mass matrix are derived based on FEM (ANSYS5.0). Model reduction was carried out and, as a result, we got 7 DOF mass and stiffness matrix. For the sake of FEM model identification, modal experiment was carried out. With the help of Sensitivity Analysis, the natural frequencies of FEM were tuned to those of Experiment. In this work, the Sky Hook and the LQG control theory were adopted for v iteration control using stacked piezoactuator. Experiments were performed with changing excitation frequency from 10 Hz upto 200 Hz and we got frequency response function of guided-missile equipments. The magnitude of 3rd mode of guided-missile equipments is 8.6 % that of Uncontrolled in Skyhook controller and is 3.4 % that of uncontrolled in LQG controller.

A Study of the Hydraulic Circuit Model for a Magnetorheological Damper Analysis (MR 댐퍼 해석을 위한 유압회로 모델에 대한 연구)

  • Chang, Moon Suk;Byeon, Woo Jin;Kim, Soo Tae;An, Chae Hean
    • Journal of Drive and Control
    • /
    • v.14 no.1
    • /
    • pp.8-13
    • /
    • 2017
  • This paper proposes a hydraulic circuit for a Magnetorheological (MR) damper that can be used for semi-active and active controls. Methods are presented for obtaining reliable damping force displacement and velocity data, and hysteresis loop data corresponding to applied current. In order to get reliable data, analysis using electric and electronic software, a series of tests. and comparative evaluations are required. A hydraulic circuit model is proposed that can be applied to analyze a MR damper without any assumptions where the yield stress data according to the applied current are known. Analysis results of the proposed hydraulic circuit are confirmed by experimental results within acceptable tolerance. This hydraulic circuit model can be applied to various MR dampers and systems.