• 제목/요약/키워드: Active Force control

검색결과 530건 처리시간 0.028초

능동 휠 토크 제어시스템 설계를 위한 제동력${\cdot}$구동력 배분제어에 관한연구 (A Study on Braking and Driving Force Distribute Control for Active Traction Control System)

  • 박중현;김순호
    • 한국정보통신학회논문지
    • /
    • 제9권6호
    • /
    • pp.1402-1406
    • /
    • 2005
  • 차량 안정성에 관한연구는 전자제어시스템의 발달과 더불어 급속한 발전을 이룩하였다. 이러한 장치들은 ABS, TCS등이 있고, 현재 활발히 연구되고, 실용화 단계에 있는 VDC이 있다. 그러나 이러한 장치들은 제동력이나 엔진 토크의 감소로 제어되므로 운전자의 의지와는 상관이 없는 차량의 운동이 발생하게 된다. 본 논문에서는 ATC의 동적성능 해석을 수행 하였다.

준능동 TMD를 이용한 단자유도 구조물의 진동제어 (Vibration control of an SDOF structure using semi-active tuned mass damner)

  • 김현수;이동근
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2006년도 학술발표회 논문집
    • /
    • pp.424-431
    • /
    • 2006
  • Many types of tuned mass dampers (TMDs), such as active TMDs, multiple TMDs, hybrid TMDs etc., have been studied to effectively reduce the dynamic responses of a structure subjected to various types of dynamic loads. In this study, we replace a passive damper by a semi-active tuned mass damper to improve the control performance of conventional TMDs (STMD). An idealized variable damping device is used as semi-active dampers. These semi-active dampers can change the properties of TMDs in real time based on the dynamic responses of a structure. The control performance of STMD is investigated with respect to various types of excitation by numerical simulation. Groundhook control algorithm is used to appropriately modulate the damping force of semi-active dampers. The control effectiveness between STMD and a conventional passive TMD, both under harmonic and random excitations, is evaluated and compared for a single-degree-of-freedom (SDOF) structure. Excitations are applied to the structure as a dynamic force and ground motion, respectively. The numerical studies showed that the control effectiveness of STMD is significantly superior to that of the passive TMD, regardless of the type of excitations.

  • PDF

Active structural control via metaheuristic algorithms considering soil-structure interaction

  • Ulusoy, Serdar;Bekdas, Gebrail;Nigdeli, Sinan Melih
    • Structural Engineering and Mechanics
    • /
    • 제75권2호
    • /
    • pp.175-191
    • /
    • 2020
  • In this study, multi-story structures are actively controlled using metaheuristic algorithms. The soil conditions such as dense, normal and soft soil are considered under near-fault ground motions consisting of two types of impulsive motions called directivity effect (fault normal component) and the flint step (fault parallel component). In the active tendon-controlled structure, Proportional-Integral-Derivative (PID) type controller optimized by the proposed algorithms was used to achieve a control signal and to produce a corresponding control force. As the novelty of the study, the parameters of PID controller were determined by different metaheuristic algorithms to find the best one for seismic structures. These algorithms are flower pollination algorithm (FPA), teaching learning based optimization (TLBO) and Jaya Algorithm (JA). Furthermore, since the influence of time delay on the structural responses is an important issue for active control systems, it should be considered in the optimization process and time domain analyses. The proposed method was applied for a 15-story structural model and the feasible results were found by limiting the maximum control force for the near-fault records defined in FEMA P-695. Finally, it was determined that the active control using metaheuristic algorithms optimally reduced the structural responses and can be applied for the buildings with the soil-structure interaction (SSI).

곡선부 주행안전성 향상을 위한 윤축 조향 제어 (Wheelset Steering Control for Improvement a Running Safety on Curved Track)

  • 허현무;안다훈;김남포;심경석;박태원
    • 한국정밀공학회지
    • /
    • 제31권9호
    • /
    • pp.759-764
    • /
    • 2014
  • Lateral force of wheel is important parameter when we evaluate the safety of a railway vehicle on curved track. The lateral force of wheel is influenced by the steering performance of wheelsets. Generally, in passive type vehicles, the steering performance of wheelsets is influenced by the parameters like primary spring stiffness, wheel base, conicity of the wheel profile, etc. But, the steering performance of passive type vehicle has its limit. To overcome the limit of the steering performance of passive type vehicle, active steering technology is being developed. In this paper, we analyze the lateral force of wheel and the safety of the railway vehicle on curved track by adopting the active steering technology. As results of dynamic analysis for vehicle model equipped with active steering system, the lateral force of wheel is reduced and the safety is improved remarkably.

수동 Compliance가 능동적 Compliance제어의 안정도에 미치는 영향 (A Stability Effect of Passive Compliance on Active Compliance Control)

  • Chung, Tae-Sang
    • 대한전기학회논문지
    • /
    • 제39권1호
    • /
    • pp.92-106
    • /
    • 1990
  • Active compliance is often used in the control of robot manipulators for the implementation of complex tasks such as assembly, multi-finger fine motion, legged-vehicle adaptive control,etc. This technique balances the interactive force between the manipulator tip and its working environment with its position and velocity errors to achieve the operation of a damped spring. This paper investigates the effecft of passive compliance on system stability with regard to force feedback implementation for actively compliant motion. Usually it is understood that accurate position control require a stiff system. However, theoretical examination of control experiments on a legged suspension vehicle suggests that, if the control includes discrete-time force feedback, some passive compliance is necessssary at the legs of the vehicle for system stability. This can be an important factor to bl considered in manipulator design and control. A theoretical analysis, numerical simulation, and experimental result, confirming the above conclusion, are introduced in this paper.

  • PDF

Optimization of LQR method for the active control of seismically excited structures

  • Moghaddasie, Behrang;Jalaeefar, Ali
    • Smart Structures and Systems
    • /
    • 제23권3호
    • /
    • pp.243-261
    • /
    • 2019
  • This paper introduces an appropriate technique to estimate the weighting matrices used in the linear quadratic regulator (LQR) method for active structural control. For this purpose, a parameter is defined to regulate the relationship between the structural energy and control force. The optimum value of the regulating parameter, is determined for single degree of freedom (SDOF) systems under seismic excitations. In addition, the suggested technique is generalized for multiple degrees of freedom (MDOF) active control systems. Numerical examples demonstrate the robustness of the proposed method for controlled buildings under a wide range of seismic excitations.

Seismic response control of benchmark highway bridge using variable dampers

  • Madhekar, S.N.;Jangid, R.S.
    • Smart Structures and Systems
    • /
    • 제6권8호
    • /
    • pp.953-974
    • /
    • 2010
  • The performance of variable dampers for seismic protection of the benchmark highway bridge (phase I) under six real earthquake ground motions is presented. A simplified lumped mass finite-element model of the 91/5 highway bridge in Southern California is used for the investigation. A variable damper, developed from magnetorheological (MR) damper is used as a semi-active control device and its effectiveness with friction force schemes is investigated. A velocity-dependent damping model of variable damper is used. The effects of friction damping of the variable damper on the seismic response of the bridge are examined by taking different values of friction force, step-coefficient and transitional velocity of the damper. The seismic responses with variable dampers are compared with the corresponding uncontrolled case, and controlled by alternate sample control strategies. The results of investigation clearly indicate that the base shear, base moment and mid-span displacement are substantially reduced. In particular, the reduction in the bearing displacement is quite significant. The friction and the two-step friction force schemes of variable damper are found to be quite effective in reducing the peak response quantities of the bridge to a level similar to or better than that of the sample passive, semi-active and active controllers.

능동 현가 장치의 외란 적응 슬라이딩 모드 제어 (Active Suspension using Disturbance Accommodating Sliding Mode Control)

  • 김종래;김진호
    • 제어로봇시스템학회논문지
    • /
    • 제5권3호
    • /
    • pp.275-280
    • /
    • 1999
  • This paper presents a disturbance accommodating sliding mode control for a quarter-car active suspension using an electro-hydraulic actuator. The electro-hydraulic actuator model is nonlinear and uncertain. The hardware constrains on the actuator prevent high gain in a sliding mode control, which deteriorates the force tracking performance. DAC(Disturbance Accommodating Control) is combined with the sliding mode control to improve the tracking performance. DAC observer estimates the pressure due to the actuator uncertainty. The additional control is designed to compensate the estimated pressure. Simulation results show the improved tracking performance with the Proposed control methods.

  • PDF

FUZZY POSITION/FORCE CONTROL OF MINIATURE GRIPPER DRVEN BY PIEZOELECTRIC BIMORPH ACTUATOR

  • Kim, Young-Chul;Chonan, Seiji;Jiang, Zhongwei
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 Proceedings of the Korea Automatic Control Conference, 11th (KACC); Pohang, Korea; 24-26 Oct. 1996
    • /
    • pp.24.2-27
    • /
    • 1996
  • This paper is a study on the fuzzy force control of a miniature gripper driven by piezoelectric bimorph actuator. The system is composed of two flexible cantilevers, a stepping motor, a laser displacement transducer and two semiconductor force sensors attached to the beams. Obtained results show that the present artificial finger system works well as a miniature gripper, which produces approximately 0.06N force in the maximum. Further, the fuzzy position/force control algorithm is applied to the soft-handing gripper for stable grasping of a object. It revealed that the fuzzy rule-based controller be efficient controller for the stable drive of the flexible miniature gripper. It also showed that two semiconductor strain gauges located in the flexible beam play an important roles for force control, position control and vibration suppression control.

  • PDF

미지 물체의 구속상태에 관한 실시간 추정방법 (Estimation Method for Kinematic Constraint of Unknown Object by Active Sensing)

  • 황창순
    • 대한기계학회논문집A
    • /
    • 제29권2호
    • /
    • pp.188-200
    • /
    • 2005
  • Control of a multi-fingered robotic hand is usually based on the theoretical analysis for kinematics and dynamics of fingers and of object. However, the implementation of such analyses to robotic hands is difficult because of errors and uncertainties in the real situations. This article presents the control method for estimating the kinematic constraint of an unknown object by active sensing. The experimental system has a two-fingered robotic hand suspended vertically for manipulation in the vertical plane. The fingers with three degrees-of-freedom are driven by wires directly connected to voice-coil motors without reduction gears. The fingers are equipped with three-axis force sensors and with dynamic tactile sensors that detect slippage between the fingertip surfaces and the object. In order to make an accurate estimation for the kinematic constraint of the unknown object, i.e. the constraint direction and the constraint center, four kinds of the active sensing and feedback control algorithm were developed: two position-based algorithms and two force-based algorithms. Furthermore, the compound and effective algorithm was also developed by combining two algorithms. Force sensors are mainly used to adapt errors and uncertainties encountered during the constraint estimation. Several experimental results involving the motion of lifting a finger off an unknown object are presented.