• Title/Summary/Keyword: Active Constrained Layer Damping

Search Result 21, Processing Time 0.036 seconds

Vibration Control of Laminated Composite Beams Using Active Constrained Layer Damping Treatment (능동구속감쇠 기법을 이용한 복합적층보의 진동 제어)

  • 강영규;최승복
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.7
    • /
    • pp.261-266
    • /
    • 2001
  • The flexural vibration of laminated composite beams with active and passive constrained layer damping has been investigated to design a structure with maximum possible damping capacity. The equations of motion are derived fro flexural vibrations of symmetrical,. multi-layer laminated beams. The damping ratio and model damping of the first bending mode are calculated by means of iterative complex eigensolution method. The direct negative velocity feedback control is used for the active constrained layer damping. It is shown that the flexible laminated beam is more effective in the vibration control for both active and passive constrained layer damping. and this paper addresses a design strategy of laminated composite under flexural vibrations with constrained layer damping.

  • PDF

Vibration Characteristic Study of Arc Type Shell Using Active Constrained Layer Damping (능동 구속감쇠층을 이용한 아크형태 셸 모델에 대한 진동특성 연구)

  • 고성현;박현철;황운봉;박철휴
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.193-200
    • /
    • 2004
  • The Active Constrained Layer Damping(ACLD) combines the simplicity and reliability of passive damping with the low weight and high efficiency of active control to attain high damping characteristics. The proposed ACLD treatment consists of a viscoelastic damping which is sandwiched between an active piezoelectric layer and a host structure. In this manner, the smart ACLD consists of a Passive Constrained Layer Damping(PCLD) which is augmented with an active control in response to the structural vibrations. The arc type shell model is introduced to describe the interactions between the vibrating host structure, piezoelectric actuator and viscoelastic damping. The system is modeled by applying ARMAX model and changing a state-space form through the system identification method. An optimum control law for the piezo actuator is obtain by LQR(Linear Quadratic Regulator) method. The performance of the ACLD system is determined and compared with PCLD in order to demonstrate the effectiveness of the ACLD treatment. Also, the actuation capability of a piezo actuator is examined experimentally by varying thickness of viscoelastic material(VEM).

Experiment on Vibration control of Beam using Active Constrained Layer Damping Treatment (능동구속감쇠 기법을 이용한 보의 진동제어 실험)

  • Choi, Jin-Young;Kang, Young-Kyu;Kim, Jae-Hwan;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.262-267
    • /
    • 2000
  • The flexural vibration of aluminum beams with active and passive constrained-layer damping has been investigated experimentally to design structure with maximum possible damping capacity. Piezoelectric film is used as sensor and piezoceramic as actuator for negative velocity feedback control. This paper shows the effectiveness of active constrained-layer damping treatment through experiment, and we have carried out an experiment to study effect of beam thickness.

  • PDF

Experiment on Vibration Control of Beam Using Active Constrained-Layer Damping Treatment (능동구속감쇠 기법을 이용한 보의 진동제어 실험)

  • 강영규;최진영;김재환
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.4
    • /
    • pp.52-57
    • /
    • 2001
  • The flexural vibration of aluminum beams with active and passive constrained-layer damping has been investigated experimentally to design a structure with maximum possible damping capacity. Piezoelectric film is used as a sensor and piezoceramic as an actuator for the negative velocity feedback control. The experimental results are compared with those by the finite element analysis. This paper shows the effectiveness of active constrained-layer damping treatment through experiments, and we have carried out an experiment to study the effect of beam thickness.

  • PDF

Vibration Control of Laminated Composite Beams using Active Constrained Layer Damping Treatment (능동구속감쇠 기법을 이용한 복합적층보의 진동제어)

  • Kang, Young-Kyu;Kim, Jae-Hwan;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1333-1337
    • /
    • 2000
  • The flexural vibration of laminated composite beams with active and passive constrained-layer damping has been investigated to design structure with maximum possible damping capacity. The equations of motion are derived for flexural vibrations of symmetrical, multi-layer laminated beams. The damping ratio and modal damping of the first bending mode are calculated by means of iterative complex eigensolution method. This paper addresses a design strategy of laminated composite under flexural vibrations with active control.

  • PDF

Comparisons of smart damping treatments based on FEM modeling of electromechanical impedance

  • Providakis, C.P.;Kontoni, D.P.N.;Voutetaki, M.E.;Stavroulaki, M.E.
    • Smart Structures and Systems
    • /
    • v.4 no.1
    • /
    • pp.35-46
    • /
    • 2008
  • In this paper the authors address the problem of comparing two different smart damping techniques using the numerical modelling of the electro-mechanical impedance for plate structures partially treated with active constrained layer damping treatments. The paper summarizes the modelling procedures including a finite element formulation capable of accounting for the observed behaviour. The example used is a smart cantilever plate structure containing a viscoelastic material (VEM) layer sandwiched between a piezoelectric constrained layer and the host vibrating plate. Comparisons are made between active constrained layer and active damping only and based on the resonance frequency amplitudes of the electrical admittance numerically evaluated at the surface of the piezoelectric model of the vibrating structure.

Vibration Control of Arc Type Shell using Active Constrained Layer Damping (능동 감쇠층을 이용한 아크형태 쉘 모델에 대한 진동특성 연구)

  • 고성현;박현철;박철휴;황운봉
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1032-1038
    • /
    • 2002
  • The Active Constrained Layer Damping(ACLO) combines the simplicity and reliability of passive damping with the low weight and high efficiency of active control to attain high damping characteristics. The proposed ACLD treatment consists of a viscoelastic damping which is sandwiched between an active piezoelectric layer and a host structure. In this manner, the smart ACLD consists of a Passive Constrained Layer Damping(PCLD) which is augmented with an active control in response to the structural vibrations. The Arc type shell model is introduced to describe the interactions between the vibrating host structure, piezoelectric actuator and visco damping, The system is modeled by applying ARMAX model and changing a state-space form through the system identification method. An optimum control law for piezo actuator is obtain by LQR(Linear Quadratic Regulator) Method. The performance of ACLD system is determined and compared with PCLD in order to demonstrate the effectiveness of the ACLD treatment, Also, the actuation capability of a piezo actuator is examined experimentally by using various thickness of Viscoelastic Materials(VEM).

  • PDF

Dynamic Analysis of Plates with Active Constrained Layer Damping (능동구속층 감쇠를 이용한 판의 동역학적 해석)

  • 박철휴
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.581-586
    • /
    • 2004
  • This paper presents Newtonian formulation of the dynamics of plates treated fully with Active Constrained Layer Damping (ACLD). The developed equations of the plate/ACLD system provide analytical models far predicting the dynamic of laminated plates subjected to passive and active vibration damping controls. Numerical solutions of the analytical models are presented fir simply-supported plates in order to study the performance of the plate/ACLD system for different control strategies. The developed models present invaluable means for designing and predicting the performance of the smart laminated plates that can be used in many critical engineering applications.

  • PDF

Analysis and active control for wind induced vibration of beam with ACLD patch

  • Li, Jinqiang;Narita, Yoshihiro
    • Wind and Structures
    • /
    • v.17 no.4
    • /
    • pp.399-417
    • /
    • 2013
  • The structural vibration suppression with active constrained layer damping (ACLD) was widely studied recently. However, the literature seldom concerned with the vibration control on flow-induced vibration using active constrained layer. In this paper the wind induced vibration of cantilevered beam is analyzed and suppressed by using random theory together with a velocity feedback control strategy. The piezoelectric material and frequency dependent viscoelastic layer are used to achieve effective active damping in the vibration control. The transverse displacement and velocity in time and frequency domains, as well as the power spectral density and the mean-square value of the transverse displacement and velocity, are formulated under wind pressure at variable control gain. It is observed from the numerical results that the wind induced vibration can be significantly suppressed by using a small outside active voltage on the constrained layer.

Dynamics Modeling of Plate Treated with Active Constrained Layer Damping (능동 구속층 감쇠 처리된 판의 동적 모델링)

  • Park, C.H.;Kim, W.C.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.124-143
    • /
    • 1997
  • 본 논문은 능동 구속층 감쇠(active constrained layer damping) 처리된 관의 동적 모델링과 정식화를 제시한다. 판의 운동방정식은 Hamilton정리를 이용하여 전개된 판, piezoelectric film 및 점탄성층의 운동방정식을 조합하므로서 유도된다. 이 운동방정식은 외부인가전압의 영향하에서 적층판의 해석적 모델을 제공할 뿐만이 아니라, 판 구조내에서 진동에너지를 감소시킬 수 있는 전단층의 효과에 대한 변위관계식을 나타낸다. 그리고 운동방정식에 대응하는 경계조건도 유도되었다. 또한 판과 능동구속층감쇠계의 동특성을 설명하기 위한 유한요소모델이 유도되었다. 이 모델의 타당성을 실온조건에서 실험적으로 입증하였다. 개발된 이론 및 실험적인 결과들은 판과 능동구속층 감쇠계가 구조진동의 감쇠를 위한 매우 유효한 수단으로 사용될 수 있음을 나타내었다.

  • PDF