• 제목/요약/키워드: Active Carbon

검색결과 896건 처리시간 0.026초

밀폐식 Ni-Cd 전지의 충전특성에 관한 연구 (Study on the Charging Characteristics of a Sealed Type Ni-Cd Cell)

  • 박영우;김재원;전무식
    • 대한화학회지
    • /
    • 제15권6호
    • /
    • pp.347-352
    • /
    • 1971
  • The variations of the positive and negative electrode potentials, and of internal pressure were measured during the charge of the sealed type Ni-Cd cell. Both polarization characteristics of a paste type Cd-electrode as a gas diffusion electrode in 30% KOH solution and the effects of active carbon electrode as an oxygen consuming auxiliary electrode of the Ni-Cd cell on the charging characteristics of the cell were studied. Peak voltage at the end of charge of the cell is ascribed to the peak at the negative electrode potential, which is due to the concentration polarization by the lack of $Cd^{++}$ ion and oxygen concentration. And the recovery of the negative electrode potential is resulted from depolarization by the increasing diffusion limiting current density with the increasing oxygen pressure. The active carbon electrode was effective as an oxygen consuming auxiliary electrode. The internal pressure of the cell could be maintained below 200mmHg even at one hour rate charge and overcharge by the use of active carbon electrode as an auxiliary electrode.

  • PDF

The Dual-frequency (20/40 kHz) Ultrasound Assisted Photocatalysis with the Active Carbon Fiber-loaded Fe3+-TiO2 as Photocatalyst for Degradation of Organic Dye

  • Xiong, Shaofeng;Yin, Zhoulan;Zhou, Yuanjin;Peng, Xianzhong;Yan, Wenbin;Liu, Zhixiong;Zhang, Xiangyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권10호
    • /
    • pp.3039-3045
    • /
    • 2013
  • Dual-frequency ultrasound assisted photocatalysis (DUAP) method was proposed to degrade a stable organic model effluent, cresol red (CR), using the prepared $Fe^{3+}$-doped $TiO_2$ with active carbon fiber loading ($Fe^{3+}-TiO_2/ACF$) as photocatalyst. The influence of key factors, including Fe doping amount and power density of dual-frequency ultrasounds (20/40 kHz), on the degradation efficiency was investigated. The degradation efficiency rises to 98.7% in 60 min accompanied by the color removal of CR liquid samples from yellow to colorless transparent at optimal conditions. A synergy index of 1.40 was yielded by comparison with single ultrasound assisted photocatalysis (SUAP) and the photocatalysis without ultrasound assisted (UV/$TiO_2$), indicating that a clear synergistic effect exists for the DUAP process. Obvious enhancement of degradation efficiency for the DUAP process should be attributed to production of large amount of free radicals by strong cavitational effects of dual ultrasounds.

Ginsentology II: Chemical Structure-Biological Activity Relationship of Ginsenoside

  • Lee, Byung-Hwan;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • 제31권2호
    • /
    • pp.69-73
    • /
    • 2007
  • Since chemical structures of ginsenoside as active ingredient of Panax ginseng are known, accumulating evidence have shown that ginsenoside is one of bio-active ligands through the diverse physiological and pharmacological evaluations. Chemical structures of ginsenoside could be divided into three parts depending on diol or triol ginsenoside: Steroid- or cholesterol-like backbone structure, carbohydrate portions, which are attached at the carbon-3, -6 or -20, and aliphatic side chain coupled to the backbone structure at the carbon-20. Ginsenosides also exist as stereoisomer at the carbon-20. Bioactive ligands usually exhibit the their structure-function relationships. In ginsenosides, there is little known about the relationship of chemical structure and biological activity. Recent reports have shown that ginsenoside $Rg_3$, one of active ginsenosides, exhibits its differential physiological or pharmacological actions depending on its chemical structure. This review will show how ginsenoside $Rg_3$, as a model compound, is functionally coupled to voltage-gated ion channel or ligand-gated ion channel regulations in related with its chemical structure.

완효성 탄소원 정제 내 citric acid의 생물학적 탈질소화 영향 (Assessing the Role of Citric Acid in Denitrification of Nitrate in Slow-releasing Carbon Source Tablet)

  • 한경진;염여훈;김영;권수열
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권3호
    • /
    • pp.41-49
    • /
    • 2022
  • This study utilized citric acid as a floating agent in biological denitrification process and assessed its role under different carbon supplying conditions. Several microcosm tests including citric acid active (CAA), precipitating tablet release active (PTRA) and floating tablet release active (FTRA) were conducted to evaluate nitrate denitrification efficacy. In CAA reactors, nitrate removal was accompanied by the formation of denitrification by-products such as nitrite and nitrous oxide, with the extent of nitrate removal being proportional to citric acid concentration. These results suggest that citric acid induced heterotrophic biological denitrification. PTRA reactor that incorporated CAA and the same electron donor showed a similar denitrification efficiency to CAA reactor. FTRA reactor, which contained the same amount of fumarate as PTRA, enhanced denitrification by 7% as compared to the PTRA reactor. The overall results of this work indicate that surplus citric acid can be efficiently utilized in heterotrophic denitrification.

Experimental Investigation of the Effect of Composition on the Performance and Characteristics of PEM Fuel Cell Catalyst Layers

  • Baik, Jung-Shik;Seong, Dong-Mug;Kim, Tae-Min
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.157-160
    • /
    • 2007
  • The catalyst layer of a proton exchange membrane (PEM) fuel cell is a mixture of polymer, carbon, and platinum. The characteristics of the catalyst layer play critical role in determining the performance of the PEM fuel cell. This research investigates the role of catalyst layer composition using a Central Composite Design (CCD) experiment with two factors which are Nafion content and carbon loading while the platinum catalyst surface area is held constant. For each catalyst layer composition, polarization curves are measured to evaluate cell performance at common operating conditions, Electrochemical Impedance Spectroscopy (EIS), and Cyclic Voltammetry (CV) are then applied to investigate the cause of the observed variations in performance. The results show that both Nafion and carbon content significantly affect MEA performance. The ohmic resistance and active catalyst area of the cell do not correlate with catalyst layer composition, and observed variations in the cell resistance and active catalyst area produced changes in performance that were not significant relative to compositions of catalyst layers.

  • PDF

수산화바륨을 이용한 이산화탄소 확산측정법의 개발 및 평가 (Development and Evaluation of a Carbon Dioxide Diffusive Sampling Method using Barium Hydroxide)

  • 임봉빈
    • 한국대기환경학회지
    • /
    • 제29권1호
    • /
    • pp.56-63
    • /
    • 2013
  • This study was aimed at developing and evaluating a diffusive sampling method using a barium hydroxide solution as an absorbent for measuring carbon dioxide ($CO_2$) in ambient air. The collected $CO_2$ concentration was calculated by the change of conductivity resulted in the reaction of $CO_3{^{2-}}$ and $Ba^{2+}$ in aqueous solution. The sampling rate for the diffusive sampler was determined 0.218 mL/min, as obtained from the slope of the linear correlation between the $CO_2$ mass collected by the diffusive sampler and the time-weighted $CO_2$ concentration with the active sampling method. The unexposed blank sampler sealed in aluminium foil-polyethylene laminated packets has remained stable during at least one-month storage period. A good correlation was observed between the diffusive sampler and active sampler with a coefficient of determination of 0.956. This diffusive sampler would be suitable for the indoor $CO_2$ concentration monitoring.

Effect of Cobalt Loading on the Performance and Stability of Oxygen Reduction and Evolution Reactions in Rechargeable Zinc-air Batteries

  • Sheraz Ahmed;Joongpyo Shim;Gyungse Park
    • 대한화학회지
    • /
    • 제68권2호
    • /
    • pp.87-92
    • /
    • 2024
  • The commercialization of rechargeable metal-air batteries is extremely desirable but designing stable oxygen reduction reaction (ORR) catalysts with non-noble metal still has faced challenges to replace platinum-based catalysts. The nonnoble metal catalysts for ORR were prepared to improve the catalytic performance and stability by the thermal decomposition of ZIF-8 with optimum cobalt loading. The porous carbon was obtained by the calcination of ZIF-8 and different loading amounts of Co nanoparticles were anchored onto porous carbon forming a Co/PC catalyst. Co/PC composite shows a significant increase in the ORR value of current and stability (500 h) due to the good electronic conductive PCN support and optimum cobalt metal loading. The significantly improved catalytic performance is ascribed to the chemical structure, synergistic effects, porous carbon networks, and rich active sites. This method develops a new pathway for a highly active and advantageous catalyst for electrochemical devices.

전도성 폴리머와 셀룰로오스 종이를 결합한 EAPap 작동기 (Conductive Polymer Coated Electro-active Paper (EAPap) as Hybrid Actuator)

  • 윤성률;김재환
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.275-278
    • /
    • 2004
  • Electro-Active Paper (EAPap) is attractive for EAP actuator due to its merit in terms of light weight, dry condition, large displacement output, low actuation voltage and low power consumption. The EAPap is based on cellulose paper, and is shown to involve primarily transport of ions in response to an external electric field. This actuating mechanism is similar to conductive polymer based actuators. For performance improvement of EAPap, hybrid actuators are tried. The actuators based on cellulose paper attached conducting polypyrrole, polyaniline and single wall carbon nanotube/polyaniline(emeraldine base) have been achieved by Electro chemical deposition and mechanical deposition of the polymers onto cellulose paper.

  • PDF

Impregnated Active Carbon-Shelf Life Studies and Its Evaluation Against Cyanogen Chloride with and without Canister

  • Singh, Beer;Saxena, Amit;Srivastava, Avanish Kumar;Dubey, Devendra Kumar;Gupta, Arvind Kumar
    • Carbon letters
    • /
    • 제8권4호
    • /
    • pp.280-284
    • /
    • 2007
  • Samples of active carbon of $1150\;m^2/g$ surface area were impregnated with ammoniacal salts of copper, chromium and silver, with and without triethylenediamine. The samples of impregnated carbon were aged at $50^{\circ}C$, with and without 90% RH (relative humidity), for a little more than one year and chemically evaluated periodically. Initially copper (II) and chromium (VI) reduced very fast in the samples in humid atmosphere to the extent of 30% and 60% respectively in four months. These values were found to be unaffected by the presence of triethylenediamine (TEDA) indicating that the chemical did not retard the reduction process of chromium (VI) and copper (II). However, in the absence of humidity the reduction of the impregnants was significantly less (10-12%, w/w) in four months. It was quite evident; therefore, that the moisture was mainly responsible for the reduction of chromium (VI) and copper (II) species in impregnated carbons. The prolonged ageing of the samples with and without triethylenediamme after four months with and without humid atmosphere showed that the extent of reduction of chromium (VI) was very low, i.e. 5-10% and of copper (II) was 2-25%. Silver is not reduced due to carbon, as it remained unchanged in concentration on storage. The impregnated carbon samples (100 g) without triethylenediamine, which were aged at room temperature for 5 years in absence of humidity and unaged when evaluated against cyanogen chloride (CNCl) at a concentration of 4 mg/L and airflow rate of 30 lpm showed a high degree of protection (80- 110 minutes).

Influence of defective sites in Pt/C catalysts on the anode of direct methanol fuel cell and their role in CO poisoning: a first-principles study

  • Kwon, Soonchul;Lee, Seung Geol
    • Carbon letters
    • /
    • 제16권3호
    • /
    • pp.198-202
    • /
    • 2015
  • Carbon-supported Pt catalyst systems containing defect adsorption sites on the anode of direct methanol fuel cells were investigated, to elucidate the mechanisms of H2 dissociation and carbon monoxide (CO) poisoning. Density functional theory calculations were carried out to determine the effect of defect sites located neighboring to or distant from the Pt catalyst on H2 and CO adsorption properties, based on electronic properties such as adsorption energy and electronic band gap. Interestingly, the presence of neighboring defect sites led to a reduction of H2 dissociation and CO poisoning due to atomic Pt filling the defect sites. At distant sites, H2 dissociation was active on Pt, but CO filled the defect sites to form carbon π-π bonds, thus enhancing the oxidation of the carbon surface. It should be noted that defect sites can cause CO poisoning, thereby deactivating the anode gradually.