DOI QR코드

DOI QR Code

The Dual-frequency (20/40 kHz) Ultrasound Assisted Photocatalysis with the Active Carbon Fiber-loaded Fe3+-TiO2 as Photocatalyst for Degradation of Organic Dye

  • Xiong, Shaofeng (School of Chemistry and Chemical Engineering, Central South University) ;
  • Yin, Zhoulan (School of Chemistry and Chemical Engineering, Central South University) ;
  • Zhou, Yuanjin (Xiangda Environmental Protection Co., LTD.) ;
  • Peng, Xianzhong (Xiangda Environmental Protection Co., LTD.) ;
  • Yan, Wenbin (College of Chemistry and Chemical Engineering, Jishou University) ;
  • Liu, Zhixiong (College of Chemistry and Chemical Engineering, Jishou University) ;
  • Zhang, Xiangyu (Xiangda Environmental Protection Co., LTD.)
  • Received : 2013.05.27
  • Accepted : 2013.07.23
  • Published : 2013.10.20

Abstract

Dual-frequency ultrasound assisted photocatalysis (DUAP) method was proposed to degrade a stable organic model effluent, cresol red (CR), using the prepared $Fe^{3+}$-doped $TiO_2$ with active carbon fiber loading ($Fe^{3+}-TiO_2/ACF$) as photocatalyst. The influence of key factors, including Fe doping amount and power density of dual-frequency ultrasounds (20/40 kHz), on the degradation efficiency was investigated. The degradation efficiency rises to 98.7% in 60 min accompanied by the color removal of CR liquid samples from yellow to colorless transparent at optimal conditions. A synergy index of 1.40 was yielded by comparison with single ultrasound assisted photocatalysis (SUAP) and the photocatalysis without ultrasound assisted (UV/$TiO_2$), indicating that a clear synergistic effect exists for the DUAP process. Obvious enhancement of degradation efficiency for the DUAP process should be attributed to production of large amount of free radicals by strong cavitational effects of dual ultrasounds.

Keywords

References

  1. Matsushita, M.; Kuramitz, H.; Tanaka, S. Environ. Sci. Technol. 2005, 39, 3805. https://doi.org/10.1021/es040379f
  2. Singh, K.; Arora, S. Crit. Rev. Env. Sci. Tec. 2011, 41, 807. https://doi.org/10.1080/10643380903218376
  3. Agustina, T. E.; Ang, H. M.; Vareek, V. K. J. Photochem. Photobiolog. 2005, 6, 264. https://doi.org/10.1016/j.jphotochemrev.2005.12.003
  4. Tang, J.; Ye, J. Chem. Phys. Lett. 2005, 410, 104. https://doi.org/10.1016/j.cplett.2005.05.051
  5. Torres, R. A.; Nieto, J. I.; Combet, E.; Petrier, C.; Pulgarin, C., Appl. Cata. B 2008, 80, 168. https://doi.org/10.1016/j.apcatb.2007.11.013
  6. Tong, H.; Ouyang, S.; Bi, Y.; Umezawa, N.; Oshikiri, M.; Ye, J. Adv. Mater. 2012, 24, 229. https://doi.org/10.1002/adma.201102752
  7. Kaur, S.; Singh, V. Ultrason. Sonochem. 2007, 14, 531. https://doi.org/10.1016/j.ultsonch.2006.09.015
  8. Kilic, M.; Kocturk, G.; San, N.; Cinar, Z. Chemoshphere 2007, 69, 1396. https://doi.org/10.1016/j.chemosphere.2007.05.002
  9. Jin, Y.; Wu, M.; Zhao, G.; Li, M. Chem. Eng. J. 2011, 168, 1248. https://doi.org/10.1016/j.cej.2011.02.026
  10. Lee, M.; Oh, J. Ultrason. Sonochem. 2011, 18, 781. https://doi.org/10.1016/j.ultsonch.2010.11.022
  11. Madhavan, J.; Kumar, P. S. S.; Anandan, S.; Zhou, M.; Grieser, F.; Ashokkumar, M. Chemosphere 2010, 80, 747. https://doi.org/10.1016/j.chemosphere.2010.05.018
  12. Mahamuni, N. N.; Adewuyi, Y. G. Ultrason. Sonochem. 2010, 17, 990. https://doi.org/10.1016/j.ultsonch.2009.09.005
  13. Mishra, K. P.; Gogate, P. R. Ultrason. Sonochem. 2011, 18, 739. https://doi.org/10.1016/j.ultsonch.2010.11.004
  14. Neppolian, B.; Ciceri, L.; Bianchi, C. L.; Grieser, F.; Ashokkumar, M. Ultrason. Sonochem. 2011, 18, 135. https://doi.org/10.1016/j.ultsonch.2010.04.002
  15. Sekiguchi, K.; Sasaki, C.; Sakamoto, K. Ultrason. Sonochem. 2011, 18, 158. https://doi.org/10.1016/j.ultsonch.2010.04.008
  16. Vajnhandl, S.; Majcen Le Marechal, A. Dyes Pigments 2005, 65, 89. https://doi.org/10.1016/j.dyepig.2004.06.012
  17. Zhou, L.; Wang, W.; Zhang, L. J. Mol. Catal. A-Chem. 2007, 268, 195. https://doi.org/10.1016/j.molcata.2006.12.026
  18. Xiong, S. F.; Yin, Z. L.; Yuan, Z. F.; Yan, W. B.; Yang, W. Y.; Liu, J. J.; Zhang, F. Ultrason. Sonochem. 2012, 19, 756. https://doi.org/10.1016/j.ultsonch.2012.01.007
  19. Shi, J.-W. Chem. Eng. J. 2009, 151, 241. https://doi.org/10.1016/j.cej.2009.02.034
  20. Pichat, P.; Guillard, C.; Pe, C.; Chopin, T. Phys. Chem. Chem. Phys. 1999, 1, 4663. https://doi.org/10.1039/a902506e
  21. Das, N. K.; Mandal, B. M. Polymer 1982, 23, 1653. https://doi.org/10.1016/0032-3861(82)90188-4
  22. Yoneyama, H.; Haga, S.; Yamanaka, S. J. Phys. Chem. 1989, 93, 4833. https://doi.org/10.1021/j100349a031
  23. Serpone, N.; Lawless, D.; Khairutdinov, R. J. Phys. Chem. 1995, 99, 16646. https://doi.org/10.1021/j100045a026
  24. Yu, J.; Yu, X. Environ. Sci. Technol. 2008, 42, 4902. https://doi.org/10.1021/es800036n
  25. Yamashita, H.; Harada, M.; Misaka, J.; Takeuchi, M.; Ikeue, K.; Anpo, M. J. Photochem. Photobiol. A 2002, 148, 257. https://doi.org/10.1016/S1010-6030(02)00051-5
  26. Vijayan, P.; Mahendiran, C.; Suresh, C.; Shanthi, K. Catal. Today 2009, 141, 220. https://doi.org/10.1016/j.cattod.2008.04.016
  27. Zhu, J.; Zheng, W.; He, B.; Zhang, J.; Anpo, M. J. Mol. Catal. A: Chem. 2004, 216, 35. https://doi.org/10.1016/j.molcata.2004.01.008
  28. Ranjit, K. T.; Viswanathan, B. J. Photochem. Photobiol. A: Chem. 1997, 108, 79. https://doi.org/10.1016/S1010-6030(97)00005-1
  29. Bertelli, M.; Selli, E. Appl. Catal. B: Environ. 2004, 52, 205. https://doi.org/10.1016/j.apcatb.2004.04.009
  30. Visscher, D. A.; Eenoo, P. V.; Drijvers, D.; Langenhove, H. V. J. Phys. Chem. 1996, 100, 11636. https://doi.org/10.1021/jp953688o
  31. Wang, S.; Gong, Q.; Liang, J. Ultrason. Sonochem. 2009, 16, 205. https://doi.org/10.1016/j.ultsonch.2008.08.002
  32. Ranjit, K. T.; Willner, I.; Bossmann, S. H.; Braun, A. M. Environ. Sci. Technol. 2001, 35, 1544. https://doi.org/10.1021/es001613e
  33. Makino, K.; Mossoba, M. M.; Riesz, P. J. Am. Chem. Soc. 1982, 104, 3537. https://doi.org/10.1021/ja00376a064

Cited by

  1. Preparation and photocatalytic activity of visible light-responsive zinc oxide/activated carbon fiber composites vol.42, pp.6, 2013, https://doi.org/10.1080/01932691.2019.1711110
  2. Removal of ammonia nitrogen in aquaculture wastewater by composite photocatalyst TiO 2 /carbon fibre vol.35, pp.3, 2013, https://doi.org/10.1111/wej.12686
  3. Preparation of ZnO/Bi2O3 Composites as Heterogeneous Thin Film Materials with High Photoelectric Performance on FTO Base vol.11, pp.9, 2013, https://doi.org/10.3390/coatings11091140
  4. Terahertz Broadband Absorber Based on a Combined Circular Disc Structure vol.12, pp.11, 2021, https://doi.org/10.3390/mi12111290
  5. Flexoelectricity-induced enhancement in carrier separation and photocatalytic activity of a photocatalyst vol.566, pp.None, 2013, https://doi.org/10.1016/j.apsusc.2021.150669
  6. Preparation of core-shell heterojunction photocatalysts by coating CdS nanoparticles onto Bi4Ti3O12 hierarchical microspheres and their photocatalytic removal of organic pollutants and Cr(VI) ions vol.633, pp.p2, 2022, https://doi.org/10.1016/j.colsurfa.2021.127918
  7. Surface doping of Bi4Ti3O12 with S: Enhanced photocatalytic activity, mechanism and potential photodegradation application vol.149, pp.None, 2022, https://doi.org/10.1016/j.materresbull.2021.111711