• Title/Summary/Keyword: Activator protein-1

Search Result 419, Processing Time 0.063 seconds

Changes in Protein Synthesis Induced by Chilling in Tomato Chloroplasts

  • Kim, Won-Il;Jung, Goo-Bok;Kim, Min-Kyeong;Park, Kwang-Lai;Yun, Sun-Gang
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.5
    • /
    • pp.310-316
    • /
    • 2001
  • To find out the effect of low temperature on the regulation of tomato chloroplast genes, the optimization of the system in chloroplast protein synthesis and the identification of the changes in chloroplast protein synthesis induced by chilling were studied. Incorporation reaction occurred rapidly at the first 30 minutes and was constantly maintained after 60 minutes. A broad optimal temperature on protein synthesis was found around 20 to $30^{\circ}C$. No difference was shown in the chloroplast protein synthesis under high light intensity (1600 ${\mu}E/m^2/s$) as well as under low light intensity (400 ${\mu}E/m^2/s$) even darkness. $K^+$, $Mg^{++}$ and ATP at an optimal concentration act as an activator, while DTT, chloramphenicol, cycloheximide, $Ca^{++}$ and inorganic phosphate act as an inhibitor in the chloroplast protein synthesis. Synthesis of 15, 55 and 60 kd chloroplast encoded stromal proteins and 18, 24, 33 and 55 kd chloroplast encoded thylakoid membrane proteins were reduced by chilling, while 17 kd chloroplast encoded stromal protein and 16 kd chloroplast encoded thylakoid membrane protein was induced by chilling. It was expected that the 55 kd stromal protein would be the large subunit of rubisco and the 33 kd thylakoid membrane protein would be the D1 protein which was drastically reduced by chilling.

  • PDF

Urokinase Conjugated with Water-Soluble Dextran

  • Kim Nam Deuk;Kim Hyun-Pyo;Byun Si Myung;Kim Sung Wan
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.4
    • /
    • pp.210-214
    • /
    • 1985
  • Urokinase, a plasminogen activator, was conjugated with dextran by the cyanogen bromide activation-coupling method. The resulting water-soluble conjugate was purified by gel permeation chromatography on Sephadex G-200. The maximal activity was obtained when the ratio of urokinase/dextran was 1/20 for the coupling. The final preparation showed 5 CTA units/mg conjugate, 300 CTA units/mg protein, 8.4 % activity retention, and 47 % protein retention. The urokinase-dextran conjugate had good thermal, pH and storage stabilities. In addition, it showed greater resistance to the inhibitory effect of human plasma than native urokinase. Also in vitro biological half-life of urokinase increased 40 times by this conjugation. In view of activity, excellent stability and increased half-life, the conjugate can be a potential fibrinolytic agent in an injectable form.

Photoaging protective effects of BIOGF1K, a compound-K-rich fraction prepared from Panax ginseng

  • Hong, Yo Han;Kim, Donghyun;Nam, Gibaeg;Yoo, Sulgi;Han, Sang Yun;Jeong, Seong-Gu;Kim, Eunji;Jeong, Deok;Yoon, Keejung;Kim, Sunggyu;Park, Junseong;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • v.42 no.1
    • /
    • pp.81-89
    • /
    • 2018
  • Background: BIOGF1K, a compound-K-rich fraction, has been shown to display anti-inflammatory activity. Although Panax ginseng is widely used for the prevention of photoaging events induced by UVB irradiation, the effect of BIOGF1K on photoaging has not yet been examined. In this study, we investigated the effects of BIOGF1K on UVB-induced photoaging events. Methods: We analyzed the ability of BIOGF1K to prevent UVB-induced apoptosis, enhance matrix metalloproteinase (MMP) expression, upregulate anti-inflammatory activity, reduce sirtuin 1 expression, and melanin production using reverse transcription-polymerase chain reaction, melanin content assay, tyrosinase assay, and flow cytometry. We also evaluated the effects of BIOGF1K on the activator protein-1 signaling pathway, which plays an important role in photoaging, by immunoblot analysis and luciferase reporter gene assays. Results: Treatment of UVB-irradiated NIH3T3 fibroblasts with BIOGF1K prevented UVB-induced cell death, inhibited apoptosis, suppressed morphological changes, reduced melanin secretion, restored the levels of type I procollagen and sirtuin 1, and prevented mRNA upregulation of MMP-1, MMP-2, and cyclo-oxygenase-2; these effects all occurred in a dose-dependent manner. In addition, BIOGF1K markedly reduced activator-protein-1-mediated luciferase activity and decreased the activity of mitogen-activated protein kinases (extracellular response kinase, p38, and C-Jun N-terminal kinase). Conclusion: Our results strongly suggest that BIOGF1K has anti-photoaging activity and that BIOGF1K could be used in anti-aging cosmeceutical preparations.

Effects of Saturated Long-chain Fatty Acid on mRNA Expression of Genes Associated with Milk Fat and Protein Biosynthesis in Bovine Mammary Epithelial Cells

  • Qi, Lizhi;Yan, Sumei;Sheng, Ran;Zhao, Yanli;Guo, Xiaoyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.414-421
    • /
    • 2014
  • This study was conducted to determine the effects of saturated long-chain fatty acids (LCFA) on cell proliferation and triacylglycerol (TAG) content, as well as mRNA expression of ${\alpha}s1$-casein (CSN1S1) and genes associated with lipid and protein synthesis in bovine mammary epithelial cells (BMECs). Primary cells were isolated from the mammary glands of Holstein dairy cows, and were passaged twice. Then cells were cultured with different levels of palmitate or stearate (0, 200, 300, 400, 500, and 600 ${\mu}M$) for 48 h and fetal bovine serum in the culture solution was replaced with fatty acid-free BSA (1 g/L). The results showed that cell proliferation tended to be increased quadratically with increasing addition of stearate. Treatments with palmitate or stearate induced an increase in TAG contents at 0 to 600 ${\mu}M$ in a concentration-dependent manner, and the addition of 600 ${\mu}M$ was less effective in improving TAG accumulation. The expression of acetyl-coenzyme A carboxylase alpha, fatty acid synthase and fatty acid-binding protein 3 was inhibited when palmitate or stearate were added in culture medium, whereas cluster of differentiation 36 and CSN1S1 mRNA abundance was increased in a concentration-dependent manner. The mRNA expressions of peroxisome proliferator-activated receptor gamma, mammalian target of rapamycin and signal transducer and activator of transcription 5 with palmitate or stearate had no significant differences relative to the control. These results implied that certain concentrations of saturated LCFA could stimulate cell proliferation and the accumulation of TAG, whereas a reduction may occur with the addition of an overdose of saturated LCFA. Saturated LCFA could up-regulate CSN1S1 mRNA abundance, but further studies are necessary to elucidate the mechanism for regulating milk fat and protein synthesis.

Human HS1BP3 induces cell apoptosis and activates AP-1

  • Shi, Taiping;Xie, Jieshi;Xiong, Ying;Deng, Weiwei;Guo, Jinhai;Wang, Feng;Ma, Dalong
    • BMB Reports
    • /
    • v.44 no.6
    • /
    • pp.381-386
    • /
    • 2011
  • In the present study, we characterized the function of HS1-binding protein 3 (HS1BP3), which is mutated in essential tremor and may be involved in lymphocyte activation. We found that HS1BP3 localized to the mitochondria and endoplasmic reticulum partially. Overexpression of HS1BP3 induced apoptosis in HEK293T and HeLa cell lines. When these cell lines were transfected with HS1BP3, they exhibited nuclear DNA condensation, externalization of phosphatidylserine (PS), and cleavage of poly ADP ribose polymerase (PARP). Furthermore, suppression of HS1BP3 or HS1 expression attenuates HS1BP3 induced apoptosis. In addition, HS1BP3 enhanced activator protein 1 (AP-1)-mediated transcription in a dose-dependent manner. Therefore, we conclude that HS1BP3 regulates apoptosis via HS1 and stimulates AP-1-mediated transcription.

Rapid Induction of mRNA for Prostaglandin H Synthase in Ovine Meningeal Fibroblasts

  • Nam, Myeong-Jin;Thore, Clara;Busija, David
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.4
    • /
    • pp.435-441
    • /
    • 1998
  • We examined effects of interleukin $1{\alpha}$ ($IL1{\alpha}$) and phorbol 12, 13 dibutyrate (PDB), an activator of protein kinase C, on mRNA for Prostaglandin H synthase (PGHS) and prostanoid production in cultured ovine meningeal fibroblasts. Immuno- and morphologically-identified fibroblasts were derived from cerebral cortex and white matter from fetal lambs (approximately 120 days gestation) and grown to confluence on glass coverslips in 12 well plates. Levels of prostaglandin $F_{2{\alpha}}$ and the stable hydrolysis product of prostacyclin (i.e., $6-keto-PGF_{1{\alpha}}$) were determined using enzyme immunoassay. Relative amounts of mRNA were determined by in situ hybridization using ovine cDNA for PGHS1. $IL1{\alpha}$ (10 ng/ml) increased mRNA levels over baseline by $62{\pm}19%$ (p<0.05) at 60 min., $37{\pm}12%$ (NS) at 120 min., and $36{\pm}18%$ (NS) at 240 min (n=12). Levels of $6-keto-PGF_{1{\alpha}}$ were $148{\pm}18%$ pg/ml during baseline, $246{\pm}41%$ pg/ml at 60 min., $248{\pm}40%$ pg/ml at 120 min., and $259{\pm}62%$ pg/ml at 240 min (all p<0.05) (n=12). $PGF_{2{\alpha}}$ was increased although it wasn't statistically significant. However, $IL1{\alpha}$ decreased $PGE_2$ level significantly (all p<0.05). PDB $(10^{-6}M)$ increased mRNA levels over baseline by $25{\pm}6%$ after 30 min., $40{\pm}6%$ after 60 min., and $20{\pm}8%$ after 90 min. (n=9) (all p<0.05). Levels of $6-keto-PGF_{1{\alpha}}$ were $200{\pm}43%$ pg/ml during baseline, $202{\pm}43%$ pg/ml after 30 min. (NS), $268{\pm}58%$ pg/ml after 60 min. (p<0.05), and $296{\pm}60%$ pg/ml after 90 min. (p<0.05) (n=9). Levels of $PGF_{2{\alpha}}$ were $178{\pm}26%$ pg/ml during baseline, $300{\pm}30%$ pg/ml after 30 min., $299{\pm}35%$ pg/ml after 60 min., and $355{\pm}32%$ pg/ml after 90 min (all p<0.05) (n=6). Actinomycin-D (1 mg/ml) prevented increases in mRNA, $6-keto-PGF_{1{\alpha}}$, and $PGF_{2{\alpha}}$ at 60 min. for both $IL1{\alpha}$ and PDB. We conclude that cerebral fibroblasts are avid producers of prostanoids, and that enhanced production of PGHS is responsible for augmented $PGF_{2{\alpha}}$ and prostacyclin production in the presence of an activator of protein kinase C and for decreased $PGE_2$ and increased prostacyclin production in the presence of $IL1{\alpha}$.

  • PDF

SAMD4B, a novel SAM-containing protein, inhibits AP-1-, p53- and p21-mediated transcriptional activity

  • Luo, Na;Li, Guan;Li, Yongqing;Fan, Xiongwei;Wang, Yuequn;Ye, Xiangli;Mo, Xiaoyan;Zhou, Junmei;Yuan, Wuzhou;Tan, Ming;Xie, Huaping;Ocorr, Karen;Bodmer, Rolf;Deng, Yun;Wu, Xiushan
    • BMB Reports
    • /
    • v.43 no.5
    • /
    • pp.355-362
    • /
    • 2010
  • The sterile alpha motif (SAM) is a putative protein interaction domain involved in a wide variety of biological processes. Here we report the identification and characterization of a novel gene, SAMD4B, which encodes a putative protein of 694 amino acids with a SAM domain. Northern blot and RT-PCR analysis showed that SAMD4B is widely expressed in human embryonic and adult tissues. Transcriptional activity assays show SAMD4B suppresses transcriptional activity of L8G5-luciferase. Over-expression of SAMD4B in mammalian cells inhibited the transcriptional activities of activator protein-1 (AP-1), p53 and p21, and the inhibitory effects can be relieved by siRNA. Deletion analysis indicates that the SAM domain is the main region for transcriptional suppression. The results suggest that SAMD4B is a widely expressed gene involved in AP-1-, p53- and p21-mediated transcriptional signaling activity.

Histone acetyltransferase inhibitors antagonize AMP-activated protein kinase in postmortem glycolysis

  • Li, Qiong;Li, Zhongwen;Lou, Aihua;Wang, Zhenyu;Zhang, Dequan;Shen, Qingwu W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.6
    • /
    • pp.857-864
    • /
    • 2017
  • Objective: The purpose of this study was to investigate the influence of AMP-activated protein kinase (AMPK) activation on protein acetylation and glycolysis in postmortem muscle to better understand the mechanism by which AMPK regulates postmortem glycolysis and meat quality. Methods: A total of 32 mice were randomly assigned to four groups and intraperitoneally injected with 5-Aminoimidazole-4-carboxamide1-${\beta}$-D-ribofuranoside (AICAR, a specific activator of AMPK), AICAR and histone acetyltransferase inhibitor II, or AICAR, Trichostatin A (TSA, an inhibitor of histone deacetylase I and II) and Nicotinamide (NAM, an inhibitor of the Sirt family deacetylases). After mice were euthanized, the Longissimus dorsi muscle was collected at 0 h, 45 min, and 24 h postmortem. AMPK activity, protein acetylation and glycolysis in postmortem muscle were measured. Results: Activation of AMPK by AICAR significantly increased glycolysis in postmortem muscle. At the same time, it increased the total acetylated proteins in muscle 45 min postmortem. Inhibition of protein acetylation by histone acetyltransferase inhibitors reduced AMPK activation induced increase in the total acetylated proteins and glycolytic rate in muscle early postmortem, while histone deacetylase inhibitors further promoted protein acetylation and glycolysis. Several bands of proteins were detected to be differentially acetylated in muscle with different glycolytic rates. Conclusion: Protein acetylation plays an important regulatory role in postmortem glycolysis. As AMPK mediates the effects of pre-slaughter stress on postmortem glycolysis, protein acetylation is likely a mechanism by which antemortem stress influenced postmortem metabolism and meat quality though the exact mechanism is to be elucidated.

Changes of Plasminogen Activator Activity under Heat Stress Condition in Porcine Endometrium

  • Hwangbo, Yong;Cheong, Hee-Tae;Park, Choon-Keun
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.240-246
    • /
    • 2019
  • The aim of this study was to investigate effect of heat stress on expression levels of plasminogen activators (PAs) related mRNAs and proteins, and changes of PAs activity in porcine endometrial explants. The endometrial explants (200 ± 50 mg) were isolated from middle part of uterine horn at follicular phase (Day 19-21) and were pre-incubated in serum-free culture medium at 38.5℃ in 5% CO2 for 18 h. Then, the tissues were transferred into fresh medium and were cultured at different temperature (38.5, 39.5, 40.5 or 41.5℃) for 24 h. The expression level of urokinase-type PA (uPA), type-1 PA inhibitor (PAI-1), type-2 PAI (PAI-2), and heat shock protein-90 (HSP-90) mRNA were analysis by reverse-transcription PCR and proteins were measured by western blotting. The supernatant were used for measurement of PAs activity. In results, mRNA and protein levels of HSP-90 was higher in 41.5℃ treatment groups than other treatment groups (p < 0.05). The expression of uPA, PAI-1, and PAI-2 mRNA were slightly increased by heat stress, however, there were no significant difference. Heat stress condition suppressed expression of active uPA and PAI-2 proteins (p < 0.05), whereas PAI-1 protein was increased (p < 0.01). Although PAI-1 protein was increased and active uPA was decreased, PAs activity was greatly enhanced by exposure of heat stress (p < 0.05). These results suggest that heat stress condition could change intrauterine microenvironment through regulation of PAs activity and other factors regarding with activation of PAs might be regulate by heat stress. Therefore, more studies regarding with regulatory mechanism of PAs activation are needed.

Heme Oxygenase-1 as a Potential Therapeutic Target for Hepatoprotection

  • Farombi, Ebenezer Olatunde;Surh, Young-Joon
    • BMB Reports
    • /
    • v.39 no.5
    • /
    • pp.479-491
    • /
    • 2006
  • Heme oxygenase (HO), the rate limiting enzyme in the breakdown of heme into carbon monoxide (CO), iron and bilirubin, has recently received overwhelming research attention. To date three mammalian HO isozymes have been identified, and the only inducible form is HO-1 while HO-2 and HO-3 are constitutively expressed. Advances in unveiling signal transduction network indicate that a battery of redox-sensitive transcription factors, such as activator protein-1 (AP-1), nuclear factor-kappa B (NF-${\kappa}B$) and nuclear factor E2-related factor-2 (Nrf2), and their upstream kinases including mitogen-activated protein kinases play an important regulatory role in HO-1 gene induction. The products of the HO-catalyzed reaction, particularly CO and biliverdin/bilirubin have been shown to exert protective effects in several organs against oxidative and other noxious stimuli. In this context, it is interesting to note that induction of HO-1 expression contributes to protection against liver damage induced by several chemical compounds such as acetaminophen, carbon tetrachloride and heavy metals, suggesting HO-1 induction as an important cellular endeavor for hepatoprotection. The focus of this review is on the significance of targeted induction of HO-1 as a potential therapeutic strategy to protect against chemically-induced liver injury as well as hepatocarcinogenesis.