• Title/Summary/Keyword: Activation Measurements

Search Result 274, Processing Time 0.025 seconds

Measurements of Neutron Activation and Dose Rate Induced by High-Energy Medical Linear Accelerator

  • Kwon, Na Hye;Jang, Young Jae;Kim, Jinsung;Kim, Kum Bae;Yoo, Jaeryong;Ahn, So Hyun;Kim, Dong Wook;Choi, Sang Hyoun
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.145-152
    • /
    • 2021
  • Purpose: During the treatments of cancer patients with a linear accelerator (LINAC) using photon beams with energies ≥8 MV, the components inside the LINAC head get activated through the interaction of photonuclear reaction (γ, n) and neutron capture (n, γ). We used spectroscopy and measured the dose rate for the LINAC in operation after the treatment ended. Methods: We performed spectroscopy and dose rate measurements for three units of LINACs with a portable high-purity Germanium (HPGe) detector and a survey meter. The spectra were obtained after the beams were turned off. Spectroscopy was conducted for 3,600 seconds, and the dose rate was measured three times. We identified the radionuclides for each LINAC. Results: According to gamma spectroscopy results, most of the nuclides were short-lived radionuclides with half-lives of 100 days, except for 60Co, 65Zn, and 181W nuclides. The dose rate for three LINACs obtained immediately in front of the crosshair was in the range of 0.113 to 0.129 µSv/h. The maximum and minimum dose rates measured on weekends were 0.097 µSv/h and 0.092 µSv/h, respectively. Compared with the differences in weekday data, there was no significant difference between the data measured on Saturday and Sunday. Conclusions: Most of the detected radionuclides had half-lives <100 days, and the dose rate decreased rapidly. For equipment that primarily used energies ≤10 MV, when the equipment was transferred after at least 10 minutes after shutting it down, it is expected that there will be little effect on the workers' exposure.

RADIAL UNIFORMITY OF NEUTRON IRRADIATION IN SILICON INGOTS FOR NEUTRON TRANSMUTATION DOPING AT HANARO

  • KIM MYONG-SEOP;LEE CHOONG-SUNG;OH SOO-YOUL;HWANG SUNG-YUL;JUN BYUNG-JIN
    • Nuclear Engineering and Technology
    • /
    • v.38 no.1
    • /
    • pp.93-98
    • /
    • 2006
  • The radial uniformity of neutron irradiation in silicon ingots for neutron transmutation doping (NTD) at HANARO is examined by both calculations and measurements. HANARO has two NTD holes named NTD1 and NTD2. We have been using the NTD2 hole for 5 in. NTD commercial service, and we intend to use two holes for 6 in. NTD. The objective of this study is to predict the radial uniformity of 6 in. NTD at the two holes. The radial neutron flux distributions inside single crystal and noncrystal silicon loaded at the NTD2 hole are calculated by the VENTURE code. For NTD1, the radial distributions of the reaction rate for a 6 in. NTD with a neutron screen are calculated by MCNP, and measured by gold wire activation. The results of the measurements are compared with those of the calculations. From the VENTURE calculation, it is confirmed that the neutron flux distribution in the single crystal silicon is much flatter than that in the non-crystal silicon. The non-uniformities of the measurements for radial neutron irradiation are slightly larger than those of the calculations. However, excluding local dips in the measurements, the overall trends of the distributions are similar. The radial resistivity gradient (RRG) for a 5 in. silicon ingot is estimated to be about $1.5\%$. For a 6 in. ingot, the RRG of a silicon ingot irradiated at HANARO is predicted to be about $2.1\%$. Also, from the experimental results, we expect that the RRG would not be larger than $4.4\%$.

Effect of Close kinetic chain and Open kinetic chain Position on Proprioceptive Neuromuscular Facilitation Applied to the Unilateral Upper Extremity on the Muscle Activation of Lower Extremity (닫힌사슬과 열린사슬 자세에서 편측상지에 적용된 PNF가 양측 하지의 근 활성도에 미치는 영향)

  • Han, Hyang-Wan;Kim, Sang-Soo
    • PNF and Movement
    • /
    • v.7 no.3
    • /
    • pp.17-27
    • /
    • 2009
  • The purpose of this study was to investigate the effect of close kinetic chain(CKC) and open kinetic chain(OKC) posion on proprioceptive neuromuscular facilitation applied to the unilateral upper extremity on the muscle activation of lower extremity. All subjects were randomly assigned to two groups: open kinetic chain group(n=5),closed kinetic chain group(n=5). All participants were PNF patterns applied on the unilateral upper extremity in all subjects were the kinetic chain(CKC) and open kinetic chain(OKC) posion on flexion/abduction/external rotation. The hold and approximation techniques for the irradiation were applied to end range. All measurements for each subject took the following tests: pre-test, post - test in 4weeks, post-testin 8weeks. EMG data was collected from the vastus medialis, tibialis anterior, biceps femoris, and gastrocnemius muscle of both lower extreamity using surface EMG system, Each EMG value in individual muscle was normalized for maximal voluntary contraction. The data were analyzed using Two-way analysis of variance(ANOVA) with repeated measures to determine the statistical significances. The results of this study are summarized as follows. First, during for close kinetic chain(CKC) and open kinetic chain(OKC) posion on PNF pattern application, all of the %MVIC values of close kinetic chain and open kinetic chain posion increased sign ificantly compared(p<0.05). Second, The close kinetic chain(CKC) and open kinetic chain(OKC) posion on PNF pattern application was significantly increased with in the intervention period(p<.05). Third, there was a no significant open kinetic chain posion on PNF pattern application of sing muscle group with in the intervention period.(p<0.05) there was a significant close kinetic chain posion on PNF pattern application of sing muscle group with with in the intervention period(p<0.05). Forth, interaction of the exercise position and muscle was also significant. Post-hoc tests revealed that the activation levels of vastus medialis muscle and tibialis anterior muscle was higher in the closed kinetic chain position(p<.05). that the activation levels of vastus medialis and gastrocnemius muscle was higher in the open kinetic chain position(p<.05). In conclusion, it was found that the application of PNF patterns to the unilateral upper extremity effect on the muscle activation of lower extremity and both open kinetic chain exercise and closed kinetic chain exercise was significantly increased muscle activity. Further studies are needed to analyzed long term effects and subjects resulting from these changed.

  • PDF

Characteristics of Silicon Oxide Films Grown by Rapid Thermal Oxidation (급속일산화법에 의한 실리콘 산화막의 특성)

  • 이귀연;양두영;이재용
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.28A no.12
    • /
    • pp.59-64
    • /
    • 1991
  • Thin (25-103$\AA$) SiO$_2$ films are grown using the rapid thermal oxidation processing at temperatures of 105$0^{\circ}C$-115$0^{\circ}C$ for 5-30 sec, in order to investigate the characteristics of ultra thin oxide. For measuring the thickness of oxide TEM, ellipsometry, and C-V method which is taken in the condition of small surface band bending are used and compared. When neglecting the small deviation affected by both interface state and moisture charge effect, those three methods described above give similar results. In order to examine the effect of rapid thermal annealing, part of samples are annealed in N$_2$ ambient. MOS capacitors are fabricated and the characteristics of I-V and C-V are measured. Measurements show that the activation energy of initial thickness of oxide grown during the ramp-up time is of 1.125eV and the activation energy of the oxidation rate is of 0.98eV. As oxidation temperature is increased, dielectric breakdown field E$_{BD}$ is decreased due to the increase of fixed charge density N$_f$ However, E$_{BD}$ is shown to be decreased as increasing the thickness of oxide. The increase of N$_f$ in the early stage of thermal annealing results in the decrease of E$_{BD}$.

  • PDF

A Study on the kinetics of Aluminizing of Cold rolled Steel Sheets (冷間壓廷鋼板의 Aluminizing에 對한 速度論的인 硏究)

  • Yoon, Byung-Ha;Kim, Young-Ki
    • Journal of the Korean institute of surface engineering
    • /
    • v.12 no.2
    • /
    • pp.75-83
    • /
    • 1979
  • The Rates of formation and heats of activation for the intermatallic Compound Layers between Cold rolled sheet and molten aluminium &ath (adding small amounts of silicon) has been determined by Continous aluminizing method in the temperature range of 680$^{\circ}$ to 760$^{\circ}C$ and with immerssion time. The structure of the intermetallic Compound Layers was the shape of "Tongues" in pure Al-Bath and Al-Bath Containing 1% Si, But in Al-5% Si Bath was "Band" the Composition of the intermetallic Compound Layers were checked by microhardness measurements and X-Ray probe micro analyzer. FeAl intermetallic Compound layer was found to be uniform in pure Al-Bath and Al-5% Si Bath, But Fe Al intermetallic Compound Layer was shown in Al-1% Si Bath. The growth Rates of the intermetallic Compound Layers was most rapidly increased at Temperatures from 720$^{\circ}$ to 760$^{\circ}C$, at the immorsion time above 60 Second in pure Al-Bath, But in Al-1% Si Bath was solwly increased for the same conditions, and then in Al-5% Si Bath was hardly effected by these experimental condition. Heasts of activation of 29, 46 Kcal per mole which calculuted from Layer growth experiments were found in pure Al-Bath, Al-1% Si Bath respectively.

  • PDF

KOH-activated graphite nanofibers as CO2 adsorbents

  • Yuan, Hui;Meng, Long-Yue;Park, Soo-Jin
    • Carbon letters
    • /
    • v.19
    • /
    • pp.99-103
    • /
    • 2016
  • Porous carbons have attracted much attention for their novel application in gas storage. In this study, porous graphite nano-fiber (PGNFs)-based graphite nano fibers (GNFs) were prepared by KOH activation to act as adsorbents. The GNFs were activated with KOH by changing the GNF/KOH weight ratio from 0 through 5 at 900℃. The effects of the GNF/KOH weight ratios on the pore structures were also addressed with scanning electron microscope and N2 adsorption/desorption measurements. We found that the activated GNFs exhibited a gradual increase of CO2 adsorption capacity at CK-3 and then decreased to CK-5, as determined by CO2 adsorption isotherms. CK-3 had the narrowest micropore size distribution (0.6–0.78 nm) among the treated GNFs. Therefore, KOH activation was not only a significant method for developing a suitable pore-size distribution for gas adsorption, but also increased CO2 adsorption capacity as well. The study indicated that the sample prepared with a weight ratio of ‘3’ showed the best CO2 adsorption capacity (70.8 mg/g) as determined by CO2 adsorption isotherms at 298 K and 1 bar.

Effect of Cr Contents on Precipitation Process of Cu-Cr Alloys (크롬동합금의 시효석출거동에 미치는 Cr 첨가량의 영향)

  • Koo, B.H.;Chon, G.B.;Lee, C.G.;Kim, C.J.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.5
    • /
    • pp.305-311
    • /
    • 2005
  • Effect of Cr contents(Cr: 0.27, 0.45 and 0.65wt.%) on precipitation process has been studied by electrical resistivity measurements, hardness and scanning electron microscope. The first stage of the process consists of the formation of Cr-rich particles, the second stage consists of the competitive growth of these particles. The kinetics of precipitation could be described by Johnson-Mehl-Avrami equation, $f(t)=1-\exp(-kt^n)$. The values of n were found to be in the range from 0.17 to 0.39 at the first stage and from 1.0 to 1.5 at the second stage. The activation energies of Cu-Cr alloys were determined by Cross-Cut method and were 90~136 kJ/mol. The maximum hardness value of $H_RB$ 84 was obtained in Cu-0.65wt.%Cr alloy.

Triple isotope-[13C, 15N, 2H] labeling and NMR measurements of the inactive, reduced monomer form of Escherichia coli Hsp33

  • Lee, Yoo-Sup;Ko, Hyun-Suk;Ryu, Kyoung-Seok;Jeon, Young-Ho;Won, Hyung-Sik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.14 no.2
    • /
    • pp.117-126
    • /
    • 2010
  • Hsp33 is a molecular chaperone achieving a holdase activity upon response to a dual stress by heat and oxidation. Despite several crystal structures available, the activation process is not clearly understood, because the structure inactive Hsp33 as its reduced, zinc-bound, monomeric form has not been solved yet. Thus, we initiated structural investigation of the reduced Hsp33 monomer by NMR. In this study, to overcome the high molecular weight (33 kDa), the protein was triply isotope-[$^{13}C$, $^{15}N$, $^2H$]-labeled and its inactive, monomeric state was ensured. 2D-[$^1H$, $^{15}N$]-TROSY and a series of triple resonance spectra could be successfully obtained on a high-field (900 MHz) NMR machine with a cryoprobe. However, under all of the different conditions tested, the number of resonances observed was significantly less than that expected from the amino acid sequence. Thus, a possible contribution of dynamic conformational exchange leading to a line broadening is suggested that might be important for activation process of Hsp33.

Deactivation Kinetics in Heavily Boron Doped Silicon Using Ultra Low Energy Ion Implantation (초 저 에너지 이온주입으로 고 조사량 B 이온 주입된 실리콘의 Deactivation 현상)

  • Yoo, Seung-Han;Ro, Jae-Sang
    • Korean Journal of Materials Research
    • /
    • v.13 no.6
    • /
    • pp.398-403
    • /
    • 2003
  • Shallow $p^{+}$ n junction was formed using a ULE(ultra low energy) implanter. Deactivation phenomena were investigated for the shallow source/drain junction based on measurements of post-annealing time and temperature following the rapid thermal annealing(RTA) treatments. We found that deactivation kinetics has two regimes such that the amount of deactivation increases exponentially with annealing temperature up to $850^{\circ}C$ and that it decreases linearly with the annealing temperature beyond that temperature. We believe that the first regime is kinetically limited while the second one is thermodynamically limited. We also observed "transient enhanced deactivation", an anomalous increase in sheet resistance during the early stage of annealing at temperatures higher than X$/^{\circ}C$. Activation energy for transient enhanced deactivation was measured to be 1.75-1.87 eV range, while that for normal deactivation was found to be between 3.49-3.69 eV.

A study on the growth of undoped-lnSe single crystal by vertical Bridgman method and Zn diffusion in Sn-doped InSe (수직 Bridgman법에 의한 InSe 단결정의 성장 및 Sn이 첨가된 InSe에서 Zn의 확산에 잔한 연구)

  • 정회준;문동찬;김선태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.464-467
    • /
    • 1999
  • The undoped-InSe and Sn-doped InSe single crystals were grown by vertical Bridgman method and their properties were invesigated. The orientations and the crystallinites of these crystals were identified by X-ray diffraction(XRD), double crystal rocking curve(DCRC) and etch-pit density(EPD) measurements. From the Raman spectrum at room temperature, TO, LO modes and together with their overtones and combinations were observed. Optical properties were inves ated by PL at 12K and direct band gap of these crystals obtained from optical absorption spectrum. Compared with undo&-InSe, electrical properties of Sn-doped InSe were increased and the electrical conductivity type were n-type. But electrical properties along growth direction of crystals and radial direction of wafer showed nearly uniform distribution. The Zn diffusion mechanism in InSe could be explained by interstitial-substitutional and vacancy complex models and the activation energy of 1.15-3.01eV were needed for diffusion.fusion.

  • PDF