• Title/Summary/Keyword: Activation Factor

Search Result 2,278, Processing Time 0.036 seconds

Guggulsterone Suppresses the Activation of NF-${\kappa}B$ and Expression of COX-2 Induced by Toll-like Receptor 2, 3, and 4 Agonists

  • Ahn, Sang-Il;Youn, Hyung-Sun
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1294-1298
    • /
    • 2008
  • Toll-like receptors (TLRs) induce innate immune responses recognizing conserved microbial structural molecules. All TLR signaling pathways culminate in the activation of nuclear factor-${\kappa}B$ (NF-${\kappa}B$). The activation of NF-${\kappa}B$ leads to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2). Guggul has been used for centuries to treat a variety of diseases. Guggulstreone, one of the active ingredients in guggul, has been used to treat many chronic diseases. However, the mechanism as to how guggulsterone mediate the health effects is largely unknown. Here, we report biochemical evidence that guggulsterone inhibits the NF-${\kappa}B$ activation and COX-2 expression induced by TLR2, TLR3, and TLR4 agonists. Guggulsterone also inhibits the NF-${\kappa}B$ activation induced by downstream signaling components of TLRs, myeloid differential factor 88 (MyD88), $I{\kappa}B$ kinase ${\beta}$ ($IKK{\beta}$), and p65. These results imply that guggulsterone can modulate the immune responses regulated by TLR signaling pathways.

Measuring health activation among foreign students in South Korea: initial evaluation of the feasibility, dimensionality, and reliability of the Consumer Health Activation Index (CHAI)

  • Park, MJ;Jung, Hun Sik
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.192-197
    • /
    • 2020
  • Foreign students in South Korea face important challenges when they try to maintain their health. As a measure of their motivation to actively build skills for overcoming those challenges, we evaluated the 10-item Consumer Health Activation Index (CHAI), testing its feasibility, dimensionality, and reliability. There were no missing data, there was no floor effect, and for the total scores the ceiling effect was trivial (< 2%). Results of the Kaiser-Meyer-Olkin test and Bartlett's test of sphericity indicated that the data were suitable for the detection of structure by factor analysis. The results of parallel analysis and the shape of the scree plot supported a two-factor solution. One factor had 3 items concerning "my doctor" and the other factor had the 7 remaining items. Reliability was high for the 10-item CHAI (alpha = 0.856), for the 3-item subscale (alpha = 0.838), and for the 7-item subscale (alpha = 0.857). Reliability could not be improved by deletion of any items. Use of the CHAI to gather data from these foreign students is feasible, and reliable results can be obtained whether one uses the total score from all 10 items or scores from the proposed 7-item and 3-item subscales.

Sperm Cytosolic Factor Activation for Bovine Somatic Cell Nuclear Transfer

  • Shin, Tae-Young
    • Journal of Embryo Transfer
    • /
    • v.26 no.3
    • /
    • pp.171-180
    • /
    • 2011
  • In this study I report that in vitro development rates of bovine nuclear transfer embryos activated either with boar sperm cytosolic factor (SCF) or with ionomycin followed by cycloheximide (CHX) and subsequent in vivo developmental rates after embryo transfer are related to blastocyst quality as evaluated by apoptosis analysis. SCF was extracted from porcine semen then purified for post-activation injection after nuclear transfer. The optimal timing for SCF injection was determined to be at least 22 h post-IVM for parthenogenetic activation of bovine oocyies. A total of 364 oocytes were successfully enucleated and 268 (73.6%) fused and were injected with SCF. The survival rate of fused and injected embryos was 109/113 (96.5%) after 2 h. The cleavage rates of nuclear transfer embryos after 3 d of culture in the ionomycin/CHX treated group were significantly higher than those of the SCF-activated group (93.3% vs 81.7%, p<0.01, respectively). However, at 7 d and 9 d there was no significant difference between the total developmental rates to blastocyst for either treatment group. Total blastocyst cell numbers were also not significantly different between the two activation treatments (ionomycin/CHX: 149.5${\pm}$7.7 vs. SCF: 139.3${\pm}$4.4 cells). In contrast, the apoptotic levels in the SCF blastocysts were higher than those produced after the chemical treatment (28.2${\pm}$5.1% vs. 8.8${\pm}$0.6%, respectively). A total of 18 expanded or hatching blastocysts was transferred to nine synchronized recipients in each activation group; 5/9 (55.5%) and 2/9 (22.2%) were pregnant at 40 d in the ionomycin/CHX treatment and SCF activated group, respectively. However, only one went to term in the ionomycin/CHX treatment while none of the pregnancies from the SCF group were maintained by 90 d. In conclusion, these results suggest that SCF derived from different species is a limited activator to be used for activation after bovine nuclear transfer in lieu of a chemical activation protocol.

Effects of Lentils(Lens culinaris) Extract on Proteasome Activity and Nuclear Factor κB Activation in HepG2 Human Liver Cancer Cells (렌즈콩(Lens culinaris) 추출물이 HepG2 인간 간암 세포에서 Proteasome 활성과 Nuclear Factor κB 활성화에 미치는 영향)

  • Min, Sooyeong;Yoon, Hyungeun
    • The Korean Journal of Food And Nutrition
    • /
    • v.32 no.5
    • /
    • pp.565-570
    • /
    • 2019
  • Proteasome inhibitors can improve the efficiency of cancer treatments by inhibiting nuclear factor ${\kappa}B$($NF-{\kappa}B$) activation in cancer cells. Lentils are a type of beans of which consumption of such beans is increasing. The purpose of this study was to investigate the effects of lentils extract (LE) on the proteasomal activities, $NF-{\kappa}B$ activation, and cell cycle in HepG2 human liver cancer cells. LE treatments inhibited proteasomal activities at concentrations of 10, 50, and $100{\mu}g/mL$ respectively, and repressed $NF-{\kappa}B$ activation at concentrations of 1, 10, and $100{\mu}g/mL$ respectively, in HepG2 cells. LE treatments at concentrations of 1, 10, and $100{\mu}g/mL$ respectively, increased sub-G1 cell population in HepG2 cells, which may be the result of apoptosis. The results suggest that LE inhibited $NF-{\kappa}B$ activation partially with its proteasome inhibitory activities, and the increase of sub-G1 cell population was induced partially, by inhibition of $NF-{\kappa}B$ activation in HepG2 cells.

TAK1-dependent Activation of AP-1 and c-Jun N-terminal Kinase by Receptor Activator of NF-κB

  • Lee, Soo-Woong;Han, Sang-In;Kim, Hong-Hee;Lee, Zang-Hee
    • BMB Reports
    • /
    • v.35 no.4
    • /
    • pp.371-376
    • /
    • 2002
  • The receptor activator of nuclear factor kappa B (RANK) is a member of the tumor necrosis factor (TNF) receptor superfamily. It plays a critical role in osteoclast differentiaion, lymph node organogenesis, and mammary gland development. The stimulation of RANK causes the activation of transcription factors NF-${\kappa}B$ and activator protein 1 (AP1), and the mitogen activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK). In the signal transduction of RANK, the recruitment of the adaptor molecules, TNF receptor-associated factors (TRAFs), is and initial cytoplasmic event. Recently, the association of the MAPK kinase kinase, transforming growth factor-$\beta$-activated kinase 1 (TAK1), with TRAF6 was shown to mediate the IL-1 signaling to NF-${\kappa}B$ and JNK. We investigated whether or not TAK1 plays a role in RANK signaling. A dominant-negative form of TAK1 was discovered to abolish the RANK-induced activation of AP1 and JNK. The AP1 activation by TRAF2, TRAF5, and TRAF6 was also greatly suppressed by the dominant-negative TAK1. the inhibitory effect of the TAK1 mutant on RANK-and TRAF-induced NF-${\kappa}B$ activation was also observed, but less efficiently. Our findings indicate that TAK1 is involved in the MAPK cascade and NF-${\kappa}B$ pathway that is activated by RANK.

The Effect of CoP(Community of Practice) Influence Factors on Satisfaction and Learning Culture Activation in R&D Groups: Based on Comparison Analysis by Group Maturity (연구개발 직군의 실행공동체 영향요인이 만족도 및 학습문화 활성화에 미치는 영향:집단 성숙도에 따른 비교 분석)

  • Oh, Sungho;Kim, Bo-Young
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.12
    • /
    • pp.407-420
    • /
    • 2015
  • This study analyzes the effect of CoP(Community of Practice) influence factors on satisfaction and learning culture activation in R&D groups. Research model and hypothesis is designed the relationship the effect factors for CoP which are consist of personal factor, interacting factor, support factor and environmental factor and satisfaction and the learning culture activation focused on comparing between maturity and immaturity CoP member group. It conducted an analysis based on 371 survey responses significantly. Hence, interacting, supporting and personal factor have a significant positive effect on satisfaction but environmental factor was negative effect to it. CoP Satisfaction has a positive effect on the learning culture activation. However average between two groups has not a statistically significant difference in all of the factors. At the result, interacting between members is the most important factor to the successful CoP development of R&D groups.

Cadmium but not Mercury Suppresses NF-$\kappa$B Activation and COX-2 Expression Induced by Toll-like Receptor 2 and 4 Agonists

  • Ahn, Sang-Il;Park, Seul-Ki;Lee, Mi-Young;Youn, Hyung-Sun
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.2
    • /
    • pp.141-146
    • /
    • 2009
  • Toll-like receptors (TLRs) induce innate immune responses by recognizing conserved microbial structural molecules. All TLR signaling pathways culminate in the activation of nuclear factor kappa-B (NF-$\kappa$B) leading to the induction of inflammatory gene products such as cyclooxygenase-2 (COX-2). Deregulated activation of TLRs can lead to the development of severe systemic inflammation. Divalent heavy metals, cadmium and mercury, have been used for thousands of years. While cadmium and mercury are clearly toxic to most mammalian organ systems, especially the immune system, their underlying toxic mechanism(s) remain unclear. Here, we report biochemical evidence that cadmium, but not mercury, inhibits NF-$\kappa$B activation and COX-2 expression induced by TLR2 or TLR4 agonists, while cadmium does not inhibit NF-$\kappa$B activation induced by the downstream signaling component of TLRs, MyD88. Thus, the target of cadmium to inhibit NF-$\kappa$B activation may be upstream of MyD88 including TLRs themselves, or events leading to TLR activation by agonists.

Expression and Activation of Transforming Growth Factor-Beta 2 in Cultured Bone Cells

  • Lee, Chang-Ho
    • Animal cells and systems
    • /
    • v.4 no.3
    • /
    • pp.273-278
    • /
    • 2000
  • Transforming growth factor-$\beta$ (IGF-$\beta$)s are multifunctional small polypeptides synthesized in most cell types. TGF-$\beta$ exerts pivotal effects on both bone formation and resorption. In addition, increasing lines of evidence implicate TGF-$\beta$ as a potential coupling factor between these two processes during bone remodeling. In the present study, the expression form and the activation mechanism of latent-TGF-$\beta$ were investigated using specific antibodies for each isoform. TGF-$\beta$s were observed to be synthesized and accumulated in a large amount in cultured osteoblastic cells. The estimated molecular weights of intracellular TGF-$\beta$2 and -$\beta$3 were 49 and 55 kDa, respectively. Based on proteolytic digestion study and immunofluorescence observation, these precursor forms seemed to be accumulated in distinct intracellular compartments. To examine whether the internal pool of TGF-$\beta$ was possiblely regulated by external signals, their biological activites were examined in a conditioned media of this cell. Although the intact conditioned media did not contain detectable TGF-$\beta$ activity, heat-treatment or acid-activation of the conditioned media revealed significant TGF-$\beta$ activity. Furthermore, in the presence of estrogen, this activity was dramatically diminished. It is known that activation of latent TGF-$\beta$ can be achieved by different chemical and enzymatic treatments, or by incubation with certain cell types. This extracellular activation was suggested as a key step in the regulation of TGF-$\beta$ activity. In addition to these extracellular activation, this study suggests that the synthesis and intracellular processing are important regulation steps for TGF-$\beta$ action. In addition, this regulation Is specific for TGF-$\beta$ type 2, because the change was not observed in TGF-$\beta$3 in osteoblastic cell line.

  • PDF

A Study on Thermal Decomposition of RDX According to the Size using TGA (TGA를 이용한 RDX의 입자 크기에 따른 열적 분해 특성 연구)

  • Bum, Kil-Ho;Kim, Seung-Hee;Kim, Jin-Seuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.81-85
    • /
    • 2012
  • This work is related to study the thermal decomposition of 1,3,5-trinitro-1,3,5-triazacylohexane(RDX) by differential scanning calorimeter and thermo-gravimetry with Kissinger's & Iso-conversional method under nonisothermal conditions, with heating rate from 2 to $8^{\circ}C$/min or given heating rate. We calculated and compared activation energy with these two methods. Iso-conversional method is better than Kissinger's method to study decomposition mechanism. We also investigated activation energy and frequency factor by Kissinger's & Iso-conversional method with the influence of particle size. In case of single crystal, Cl-3(large crystal) has better thermal stability than Cl-5(small crystal). The activation energy increased according to the size of the particle size.

Suppressing NF-κB/Caspase-1 Activation is a Mechanism Involved in the Anti-inflammatory Effect of Rubi Fructus in Stimulated HMC-1 Cells

  • Mi-Ok Yang;Noh-Yil Myung
    • Biomedical Science Letters
    • /
    • v.29 no.3
    • /
    • pp.137-143
    • /
    • 2023
  • Inflammation plays an important role in immune system's response to tissue injury and biological stimuli. However, excessive inflammation can cause tissue damage. Therefore, the development of naturally derived anti-inflammatory agents have received broad attention. In this study, we investigated the anti-inflammatory mechanism of Rubi Fructus (RF) extract on the mast cell-mediated inflammatory response. To determine the regulatory mechanism of RF in inflammatory reaction, we evaluated the effects of RF on secretion of interleukin (IL)-8, IL-6 and tumor necrosis factor (TNF)-α and activation of nuclear factor-κB (NF-κB) and caspase-1 in activated human mast cells-1 (HMC-1). The results showed that RF attenuated IL-8, IL-6 and TNF-α secretion in a concentration-dependent manner. Moreover, RF significantly attenuated caspase-1and NF-κB activation in activated HMC-1. Conclusively, the present results provide evidence that RF may be a promising agent for anti-inflammatory therapy.