• 제목/요약/키워드: Activating protein-1

검색결과 316건 처리시간 0.03초

Arabidopsis nucleoside diphosphate kinase-2 as a plant GTPase activating protein

  • Shen, Yu;Han, Yun-Jeong;Kim, Jeong-Il;Song, Pill-Soon
    • BMB Reports
    • /
    • 제41권9호
    • /
    • pp.645-650
    • /
    • 2008
  • Nucleoside diphosphate kinase (NDPK) is involved in multiple signaling pathways in mammalian systems, including G-protein signaling. Arabidopsis NDPK2, like its mammalian counterparts, is multifunctional despite its initial discovery phytochrome-interacting protein. This similarity raises the possibility that NDPK2 may play a role in G-protein signaling in plants. In the present study, we explore the potential relationship between NDPK2 and the small G proteins, Pra2 and Pra3, as well as the heterotrimeric G protein, GPA1. We report a physical interaction between NDPK2 and these small G proteins, and demonstrate that NDPK2 can stimulate their GTPase activities. Our results suggest that NDPK2 acts as a GTPase-activating protein for small G proteins in plants. We propose that NDPK2 might be a missing link between the phytochrome-mediated light signaling and G protein-mediated signaling.

Protein Kinase 억제제 첨가 후 Platelet-Activating Factor에 의하여 자극된 호중구반응의 변경 (Alteration of the Activated Responses in Platelet-Activating Factor-Stimulated Neutrophils by Protein Kinase Inhibitors)

  • 이강건;고지영;함동석;신용규;이정수
    • 대한약리학회지
    • /
    • 제32권1호
    • /
    • pp.103-112
    • /
    • 1996
  • Platelet-activating factor (PAF)에 의하여 자극된 호중구 respiratory burst, 탈과립과 세포질 칼슘농도의 증가에 있어 protein kinase C와 protein tyrosine kinase의 역할을 관찰하였다. PAF에 의하여 자극된 호중구에서 superoxide 및 $H_2O_2$의 생성과 myeloperoxidase와 acid phosphatase의 유리는 protein kinase C 억제제인 staurosporine과 H-7 그리고 protein tyrosine kinase 억제제인 genistein과 tyrphostin에 의하여 억제되었다. PAF에 의한 호중구 세포내 칼슘농도의 증가는 staurosporine, genistein과 methyl-2,5-dihydroxycinnamate에 의하여 억제 되었다. Staurosporine은 PAF에 의하여 자극된 호중구에서 세포내 칼슘유리와 망간유입을 억제 하였다. Genistein과 methyl-2,5-dihydroxycinnamate는 PAF에 의한 망간유입을 억제하였으나, 세포내 칼슘유리에 대한 이들의 효과는 관찰되지 않았다. PMA에 의하여 활성화된 호중구에서 세포내 칼슘농도의 증가에 대한 PAF의 자극효과는 감소되었다. Protein kinase C와 protein tyrosine kinase는 PAF에 의하여 자극된 호중구에서의 respiratory burst, lysosomal enzyme유리와 칼슘동원에 관여할 것으로 제시된다. 세포내 칼슘농도의 증가는 protein kinase의 영향을 다르게 받는 세포내 칼슘유리와 세포외부로 부터의 칼슘유입에 의하여 이루어질 것으로 추정된다. Protein kinase C가 활성화되어 있는 상태에서 세포내 칼슘동원에 대한 PAF의 자극작용은 감소될 것으로 시사된다.

  • PDF

Leptin stimulates IGF-1 transcription by activating AP-1 in human breast cancer cells

  • Min, Dong Yeong;Jung, Euitaek;Kim, Juhwan;Lee, Young Han;Shin, Soon Young
    • BMB Reports
    • /
    • 제52권6호
    • /
    • pp.385-390
    • /
    • 2019
  • Leptin, an adipokine regulating energy metabolism, appears to be associated with breast cancer progression. Insulin-like growth factor-1 (IGF-1) mediates the pathogenesis of breast cancer. The regulation of IGF-1 expression by leptin in breast cancer cells is unclear. Here, we found that leptin upregulates IGF-1 expression at the transcriptional level in breast cancer cells. Activating protein-1 (AP-1)-binding element within the proximal region of IGF-1 was necessary for leptin-induced IGF-1 promoter activation. Forced expression of AP-1 components, c-FOS or c-JUN, enhanced leptin-induced IGF-1 expression, while knockdown of c-FOS or c-JUN abrogated leptin responsiveness. All three MAPKs (ERK1/2, JNK1/2, and p38 MAPK) mediated leptin-induced IGF-1 expression. These results suggest that leptin contributes to breast cancer progression through the transcriptional upregulation of leptin via the MAPK pathway.

녹차의 (-)EGCG에 의한 사람 폐암 세포주 A549의 c-Jun N-terminal Kinase 1과 Activating Protein-1활성화를 통한 세포고사 (Green Tea (-)EGCG Induces the Apoptotic Death of Lung Cancer Cells via Activation of c-Jun N-terminal Kinase 1 and Activating Protein-1)

  • 박지선;신미경;손희숙;박래길;김명선;정원훈
    • Journal of Nutrition and Health
    • /
    • 제35권1호
    • /
    • pp.53-59
    • /
    • 2002
  • Green tea has been recognized as a favorite beverage for centuries in Easter and Westers cultures. Recently, anti-tumor effects of green tea constituents have received increasing attention. However, the mechanism of catechin-mediated cytotoxicity against tumor cells remains to be elusive. To elucidate the mechanical insights of anti-tumor effects, (-)epigallocatechin-gallate(EGCG) of catechin was applied to human lung cancer A549 cells. (-)EGCG induced the death of A549 cells, which was revealed as apoptosis in DNA fragmentation assay. (-)EGCG induced the activation of caspase family cysteine proteases including capase-3, -8 and -9 proteases in A549 cells. Furthermore, (-)EGCG increased the phosphotransferase activity of c-Jun N-terminal kinase 1JNK 1), which further induced tole transcriptional activation of activating protein-1(AP-1) in A549 cells. We suggest that (-)EGCG-induced apotosis of A549 cells is mediated by signaling pathway involving caspase family cysteine protease, JNK1 and transcription factor, AP-1.

The WNT/Ca2+ pathway promotes atrial natriuretic peptide secretion by activating protein kinase C/transforming growth factor-β activated kinase 1/activating transcription factor 2 signaling in isolated beating rat atria

  • Li, Zhi-yu;Liu, Ying;Han, Zhuo-na;Li, Xiang;Wang, Yue-ying;Cui, Xun;Zhang, Ying
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권6호
    • /
    • pp.469-478
    • /
    • 2022
  • WNT signaling plays an important role in cardiac development, but abnormal activity is often associated with cardiac hypertrophy, myocardial infarction, remodeling, and heart failure. The effect of WNT signaling on regulation of atrial natriuretic peptide (ANP) secretion is unclear. Therefore, the purpose of this study was to investigate the effect of Wnt agonist 1 (Wnta1) on ANP secretion and mechanical dynamics in beating rat atria. Wnta1 treatment significantly increased atrial ANP secretion and pulse pressure; these effects were blocked by U73122, an antagonist of phospholipase C. U73122 also abolished the effects of Wnta1-mediated upregulation of protein kinase C (PKC) β and γ expression, and the PKC antagonist Go 6983 eliminated Wnta1-induced secretion of ANP. In addition, Wnta1 upregulated levels of phospho-transforming growth factor-β activated kinase 1 (p-TAK1), TAK1 banding 1 (TAB1) and phospho-activating transcription factor 2 (p-ATF2); these effects were blocked by both U73122 and Go 6983. Wnta1-induced ATF2 was abrogated by inhibition of TAK1. Furthermore, Wnta1 upregulated the expression of T cell factor (TCF) 3, TCF4, and lymphoid enhancer factor 1 (LEF1), and these effects were blocked by U73122 and Go 6983. Tak1 inhibition abolished the Wnta1-induced expression of TCF3, TCF4, and LEF1 and Wnta1-mediated ANP secretion and changes in mechanical dynamics. These results suggest that Wnta1 increased the secretion of ANP and mechanical dynamics in beating rat atria by activation of PKC-TAK1-ATF2-TCF3/LEF1 and TCF4/LEF1 signaling mainly via the WNT/Ca2+ pathway. It is also suggested that WNT-ANP signaling is implicated in cardiac physiology and pathophysiology.

Ras GTPase 및 Ras GTPase activating protein과 사람의 질병 (Ras GTPases and Ras GTPase Activating Proteins (RasGAPs) in Human Disease)

  • 장종수
    • 생명과학회지
    • /
    • 제28권9호
    • /
    • pp.1100-1117
    • /
    • 2018
  • Ras superfamily에 속하는 monomeric small GTPase는 현재까지 170여 종이 알려져 있으며 이들은 세포 신호전달에 있어서 분자 스위치(molecular switch)로 작용하고 있다. Ras GTPase는 guanosine diphosphate (GDP)와 결합하여 불활성화 되거나 혹은 guanosine triphosphate (GTP)와 결합하여 활성화되는 guanosine nucleotide 결합단백질로서 세포내의 수많은 생리작용을 조절하고 있다. 즉, 쉬고 있던 불활성화 상태의 Ras-GDP는 외부 신호에 반응하여 활성화 된 guanine nucleotide exchange factor (GEF)에 의하여 활성형인 Ras-GTP상태로 전환되어 그 하류로 신호를 전달하는 효과기로 작용하게 된다. 신호전달을 마친 Ras-GTP는 다시 불활성형인 Ras-GDP로 전환되어야 하는데 Ras 자체의 GTPase 활성이 미약하여 RasGTPase activating protein (RasGAP)의 도움을 받아야만 한다. 이와 같이 Ras GTPase는 GEF와 GAP의 활성으로 세포 안의 스위치를 켜고 끄게 된다. 현재까지 알려진 인간 암(cancer)의 30% 이상이 돌연변이를 포함하는 Ras switch의 비정상적인 작동에 기인한다는 점이 밝혀져 있으므로 Ras GTPase의 구조와 생리적 기능에 대한 최근의 연구결과들을 요약하였다. 나아가 GTPase activating protein으로서의 기능을 상실한 RasGAP분자의 돌연변이는 세포 안의 Ras 스위치를 계속 켜 두는 상태인 Ras-GTP 상태를 유발함으로서 종국에는 암의 발생을 촉발하게 된다. 이에, 본고에서는 최근에 와서 tumor suppressor로서 알려지면서 암의 치료 표적단백질로 떠오르게 된 RasGAP의 인체생리학적 기능을 고찰하였다. 인간 게놈 안에는 RASA1, NF1, GAP1 family 및 SynGAP family 등에 속하는 14종의 RasGAP 분자들이 존재하는데 이들 GAP분자들의 이상과 인간 질병의 연관성에 대한 최근의 연구결과들에 대해 고찰하였다.

Endoplasmic Reticulum Stress Induces CAP2 Expression Promoting Epithelial-Mesenchymal Transition in Liver Cancer Cells

  • Yoon, Sarah;Shin, Boram;Woo, Hyun Goo
    • Molecules and Cells
    • /
    • 제44권8호
    • /
    • pp.569-579
    • /
    • 2021
  • Cyclase-associated protein 2 (CAP2) has been addressed as a candidate biomarker in various cancer types. Previously, we have shown that CAP2 is expressed during multi-step hepatocarcinogenesis; however, its underlying mechanisms in liver cancer cells are not fully elucidated yet. Here, we demonstrated that endoplasmic reticulum (ER) stress induced CAP2 expression, and which promoted migration and invasion of liver cancer cells. We also found that the ER stress-induced CAP2 expression is mediated through activation of protein kinase C epsilon (PKCε) and the promotor binding of activating transcription factor 2 (ATF2). In addition, we further demonstrated that CAP2 expression promoted epithelial-mesenchymal transition (EMT) through activation of Rac1 and ERK. In conclusion, we suggest that ER stress induces CAP2 expression promoting EMT in liver cancer cells. Our results shed light on the novel functions of CAP2 in the metastatic process of liver cancer cells.

Clinical and Molecular Features of Three Korean Cases of Activating Variants in the CASR Gene

  • Eun, Jung Kwan;Lee, Mi Sun;Lee, Ji Min;Lee, Eun Joo;Park, Sook-Hyun;Ko, Cheol Woo;Moon, Jung-Eun
    • Journal of Interdisciplinary Genomics
    • /
    • 제3권1호
    • /
    • pp.21-24
    • /
    • 2021
  • Purpose: Activating mutations of the calcium-sensing receptor (CASR) are a rare genetic disorder, and result in autosomal dominant hypocalcemia with hypercalciuria (ADHH). ADHH exhibited varying degrees of hypocalcemia. In this study, we report the clinical and molecular characteristics of activating variants in CASR patients diagnosed in Korea. Methods: This study included three patients with activating variants of CASR confirmed by biochemical and molecular analysis of CASR. Clinical and biochemical findings were reviewed chart retrospectively. Mutation analysis of CASR was performed by Sanger sequencing. Results: Subject 1 showed severe symptoms from the neonatal period and had difficulty in controlling the medications that were administered. Subject 2 was identified as having a novel variant of CASR with hypocalcemia and a low parathyroid hormone that were found in the neonatal period. During a course without medication, hypocalcemia occurred suddenly around 2 years of age. Subject 3 was diagnosed with hypoparathyroidism with hypocalcemic seizures starting from the neonatal period. About 4 years without taking medication with any symptom. However, at 10 years old revisited by repetitive hypocalcemic seizure events. Subject 1 and 3, were heterozygous for c.2474A>T (p.Y825F), c.2395G>A (p.E799K) located in the transmembrane domain (TMD) of CASR. Subject 2 was heterozygous for c.403A>C (S430L) located in the extracellular domain (ECD) of CASR. Conclusion: We reported 3 patients who have activating CASR variant with different onset and severity of symptoms. In the future, further study is needed to determine how the protein level according to the location of the mutation of CASR affects the degree of symptoms.

DNA-dependent Protein Kinase Mediates V(D)J Recombination via RAG2 Phosphorylation

  • Hah, Young-Sool;Lee, Jung-Hwa;Kim, Deok-Ryong
    • BMB Reports
    • /
    • 제40권3호
    • /
    • pp.432-438
    • /
    • 2007
  • V(D)J recombination, a site-specific gene rearrangement process occurring during the lymphocyte development, begins with DNA double strand breaks by two recombination activating gene products (RAG1/2) and finishes with the repair process by several proteins including DNA-dependent protein kinase (DNA-PK). In this report, we found that RAG2 was specifically phosphorylated by DNA-PK at the $365^{th}$ serine residue, and this phosphorylated RAG2 affected the V(D)J recombination activity in cells in the GFP expression-based assay. While the V(D)J recombination activity between wild-type RAG2 and mutant S365A RAG2 in the assay using a signal joint substrate was undistinguishable in DNA-PK deficient cells (M059J), the activity with wild-type RAG2 was largely increased in DNA-PK proficient cells (M059K) in comparison with mutant RAG2, suggesting that RAG2 phosphorylation by DNA-PK plays a crucial role in the signal joint formation during V(D)J recombination.

In situ hybridization법과 면역조직화학적법을 이용한 성숙한 흰쥐고환에서의 pituitary adenylate cyclase activating polypeptide의 발현 (Expression of pituitary adenylate cyclase activating polypeptide in the adult rat testis by in situ hybridization and immunohistochemistry)

  • 고필옥;곽수동
    • 대한수의학회지
    • /
    • 제41권1호
    • /
    • pp.1-6
    • /
    • 2001
  • Pituitary adenylate cyclase activating polypeptide (PACAP)는 양의 뇌하수체에서 처음 분리 되었고, 뇌하수체 전엽세포의 cAMP의 생성을 자극하며, 흰쥐고환의 정자형성과 steroid 호르몬 형성에 관련한다고 알려져 있다. 이 연구는 성숙한 흰쥐의 고환에서 PACAP mRNA와 그 단백질의 분포를 조사하여 아래와 같은 결론을 얻었다. PACAP mRNA와 그 단백질은 흰쥐의 정세관에서 정자세포의 생성단계에 따라 특이적으로 발현되었다. 이들은 정세관의 발달단계 중 III~VII 기의 정자세포에서 발현되었고, 특히 V 기에서 초기 VII 기의 원형의 정자세포에서 가장 강하게 발현되었다. 이러한 결과는 흰쥐고환의 발달단계에 있는 정자세포에서 합성된 PACAP이 정자형성에 관련된다는 것을 나타내므로, PACAP이 고환의 기능에 중요한 역할을 하는 것을 암시한다.

  • PDF