• Title/Summary/Keyword: Activating Agent

Search Result 84, Processing Time 0.028 seconds

Effect of Pueraria thunbergiana Extracts on the Activation of Immune Cells (칡 추출물의 면역세포 활성화 효과)

  • Kim, Jong-Jin;Lee, Hyeok-Jae;Yee, Sung-Tae
    • Journal of Life Science
    • /
    • v.22 no.8
    • /
    • pp.1107-1113
    • /
    • 2012
  • In this experiment, the effects of Pueraria thunbergiana extracts on the activation of immune cells were studied. An immune cell-activating factor was partially purified from P. thunbergiana by means of physiological saline extraction, acetone precipitation, and heating inactivation. P. thunbergiana extracts increased the proliferation of spleen cells and induced the production of IL-2, IL-6, TNF-${\alpha}$, and IFN-${\gamma}$ by spleen cells. Also, they increased the proliferation of purified B cells and the production of IgM antibody in a dose-dependent fashion. The extract self-induced NO synthesis in a mouse macrophage cell line (RAW264.7). When cell lines were treated with extracts, the cytokines' (IL-$1{\beta}$, IL-6, and TNF-${\alpha}$) production was markedly increased. Therefore, P. thunbergiana extract can self-activate spleen cells, B cells, and macrophages. These results might be useful in further studies into a possible immune-activating agent derived from P. thunbergiana for the development of functional foods and drugs.

A Study on the Activation Plan for Professional Sport League through Exploration of Inducing Factors of Match Fixing (승부조작 유발요인 탐색을 통한 프로스포츠 활성화 방안)

  • Bang, Shin-Woong;Park, In-Sil;Kim, Wook-Ki
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.3
    • /
    • pp.153-170
    • /
    • 2021
  • This study was attempted to derive strategic implications for activating professional sports by conducting in-depth interviews with professional sports officials such as players, teams, federations, agencies, etc., by searching for factors that cause match fixing and deriving preventive strategies based on them. Eight people with more than 3 years of experience working in professional sports were selected using the snowball sampling technique. Data were collected and analyzed by applying a semi-structured in-depth interview method for them. As a result of the analysis, five core categories (the learning effect from the cartel for entering university, the culture learned in a camp training, the manifestation of the latent learning effect, the negative effect of the human network, the personal disposition) were derived as factors causing match-fixing. As for the strategy to prevent match fixing, first, improving the college entrance examination system oriented on individual capability, second, improving the education system for student athlete, third, establishing a prevention system, fourth, continuing education, fifth, and activating the agent system as the core categories. Implications for the derived research results and future research directions were discussed.

Bag-1L is a Stress-withstand Molecule Prevents the Downregulation of Mcl-1 and c-Raf Under Control of Heat Shock Proteins in Cisplatin Treated HeLa Cervix Cancer Cells

  • Ozfiliz, Pelin;Arisan, Elif Damla;Coker-Gurkan, Ajda;Obakan, Pinar;Eralp, Tugce Nur;Dinler-Doganay, Gizem;Palavan-Unsal, Narcin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4475-4482
    • /
    • 2014
  • Background: Cisplatin, a DNA damaging agent, induces apoptosis through increasing DNA fragmentation. However, identification of intrinsic resistance molecules against Cisplatin is vital to estimate the success of therapy. Bag-1 (Bcl-2-associated anthanogene) is one anti-apoptotic protein involved in drug resistance impacting on therapeutic efficiency. Elevated levels of this protein are related with increase cell proliferation rates, motility and also cancer development. For this reason, we aimed to understand the role of Bag-1 expression in Cisplatin-induced apoptosis in HeLa cervix cancer cells. Cisplatin decreased cell viability in time- and dose-dependent manner in wt and Bag-1L+HeLa cells. Although, $10{\mu}M$ Cisplatin treatment induced cell death within 24h by activating caspases in wt cells, Bag-1L stable transfection protected cells against Cisplatin treatment. To assess the potential protective role of Bag-1, we first checked the expression profile of interacting anti-apoptotic partners of Bag-1. We found that forced Bag-1L expression prevented Cisplatin-induced apoptosis through acting on Mcl-1 expression, which was reduced after Cisplatin treatment in wt HeLa cells. This mechanism was also supported by the regulation of heat shock protein (Hsp) family members, Hsp90 and Hsp40, which were involved in the regulation Bag-1 interactome including several anti-apoptotic Bcl-2 family members and c-Raf.

Studies on Developing Direct Gene Transfer Based on Naked Plasmid DNA for Treating Anemia (Naked Plasmid DNA를 이용한 빈혈 치료용 Direct Gene Transfer 시스템의 개발에 대한 연구)

  • Park Young Seoub;Jung Dong Gun;Choi Cha Yong
    • KSBB Journal
    • /
    • v.19 no.5
    • /
    • pp.341-347
    • /
    • 2004
  • Several gene delivery therapies are being developed for treatment of serum protein deficiency. EPO is one of the most promising therapeutic agent for this treatment which is currently being investigated in depth. This study has the ultimate purpose of improving the gene delivery system for an increase of red blood cell production. A plasmid DNA was constructed smaller than other plasmids for an increase in penetration into animal cells, and two genes were cloned into each vector as a co-delivery system to express erythropoietin, and interluekin-3 or thrombopoietin, which can act on erythroid cell, thus activating hematopoiesis synergically. This co-delivery system has an advantage of decreasing the labour required for industrial production of DNA vaccine. A new plasmid vector, pVAC, in size 2.9 kb, was constructed with the essential parts from PUC 19 and pSectagB, which is much smaller than other plasmid vector and is the size of 2.9 kb. Co-delivery system was constituted by cloning human erythropoietin with each of human interluekin-3 gene or human thrombopoietin gene into both pVAC and pSectagB. As a result, the transfection efficiency of pVAC was higer than that of pSectagB in vitro, and hematocrit level of the mice injected with pVAC is higher than that of other mice. And co-delivery system, made of several plasmid DNAs, was expressed in vitro.

Effects of Mix-1 on Anti-CD40 Antibody and Recombinant IL4- Induced Cytokine Production and Immunoglobulin E in Highly Purified Mouse B Cells

  • Kim Jung Hwan;Choi Sun Mi;Lee Yong Gu;Namgoong Uk;Kim Dong Hee
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.6
    • /
    • pp.1869-1880
    • /
    • 2004
  • In the oriental medicine, a mixture of herbs has been commonly used as important components to control allergic and inflammatory diseases. In the present study, we prepared a mixture of Dictamni Radicis Cortex(Baiksunpee), Houttuyniae Herba(Uhsungcho), and Aurantii Immaturus Fructus(Jisil) to examine its anti-allergic effects in activated mouse splenic cells and found that Mix-1 is involved in regulating levels of B cell activating factors (CD23 and CD11a), IL-1β, IL-6, IL-10, TNF-α, and 1gE as well as HRF expression. It was observed that Mix-1 did not have cytotoxic effects on mLFC. Mix-1 showed inhibition of CD23 and CD11 alpaha expression in mouse B cells, and also decreased the production of IL-6, TNF-α, and 1gE. Both RT-PCR and ELISA analyses indicated that IL-6 and TNF alpha production were regulated at the gene expression level. In contrast, IL-10 mRNA and protein levels were increased in activated B cells by Mix-1 treatment. We also found that Mix-1 inhibited B cell proliferation and inhibited histamine releasing factor(HRF) expression, suggesting its inhibitory effect on histamine secretion. These data indicated that Mix-1 has an anti-allergic effect in activated macrophages and further suggest the possible application of Mix-1 as a therapeutic agent for the treatment of allergy-related diseases.

Adenophora remotiflora protects human skin keratinocytes against UVB-induced photo-damage by regulating antioxidative activity and MMP-1 expression

  • Kim, Hye Kyung
    • Nutrition Research and Practice
    • /
    • v.10 no.4
    • /
    • pp.371-376
    • /
    • 2016
  • BACKGROUND/OBJECTIVES: Chronic ultraviolet (UV) exposure-induced reactive oxygen species (ROS) are commonly involved in the pathogenesis of skin damage by activating the metalloproteinases (MMP) that break down type I collagen. Adenophora remotiflora (AR) is a perennial wild plant that inhabits Korea, China, and Japan. The present study investigated the protective effects of AR against UVB-induced photo-damage in keratinocytes. MATERIALS/METHODS: An in vitro cell-free system was used to examine the scavenging activity of 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical and nitric oxide (NO). The effect of AR on ROS formation, antioxidant enzymes, elastase, MMP-1 level, and mRNA expression of MMP-1 were determined in UVB-irradiated human keratinocyte HaCaT cells. RESULTS: AR demonstrated strong DPPH free radical and NO scavenging activity in a cell-free system exhibiting $IC_{50}$ values of 1.88 mg/mL and 6.77 mg/mL, respectively. AR pretreatment dose-dependently attenuated the production of UVB-induced intracellular ROS, and antioxidant enzymes (catalase and superoxide dismutase) were enhanced in HaCaT cells. Furthermore, pretreatment of AR prevented UVB-induced elastase and collagen degradation by inhibiting the MMP-1 protein level and mRNA expression. Accordingly, AR treatment elevated collagen content in UVB-irradiated HaCaT cells. CONCLUSION: The present study provides the first evidence of AR inhibiting UVB-induced ROS production and induction of MMP-1 as a result of augmentation of antioxidative activity in HaCaT human keratinocytes. These results suggest that AR might act as an effective inhibitor of UVB-modulated signaling pathways and might serve as a photo-protective agent.

Combination of Poly-Gamma-Glutamate and Cyclophosphamide Enhanced Antitumor Efficacy Against Tumor Growth and Metastasis in a Murine Melanoma Model

  • Kim, Doo-Jin;Kim, Eun-Jin;Lee, Tae-Young;Won, Ji-Na;Sung, Moon-Hee;Poo, Haryoung
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.9
    • /
    • pp.1339-1346
    • /
    • 2013
  • Conventional chemotherapeutic regimens often accompany severe side effects and fail to induce complete regression of chemoresistant or relapsing metastatic cancers. The need for establishing more efficacious anticancer strategies led to the development of a combined modality treatment of chemotherapy in conjunction with immunotherapy or radiotherapy. It has been reported that poly-gamma-glutamate (${\gamma}$-PGA), a natural polymer composed of glutamic acids, increases antitumor activity by activating antigen-presenting cells and natural killer (NK) cells. Here, we investigated the antitumor effect of ${\gamma}$-PGA in combination with cyclophosphamide in a murine melanoma model. Whereas cyclophosphamide alone directly triggered apoptosis of tumor cells in vitro, ${\gamma}$-PGA did not show cytotoxicity in tumor cells. Instead, it activated macrophages, as reflected by the upregulation of surface activation markers and the secretion of proinflammatory factors, such as nitric oxide and tumor necrosis factor ${\alpha}$. When the antitumor effects were examined in a mouse model, combined treatment with cyclophosphamide and ${\gamma}$-PGA markedly suppressed tumor growth and metastasis. Notably, ${\gamma}$-PGA treatment dramatically increased the NK cell population in lung tissues, coinciding with decreased metastasis and increased survival. These data collectively suggest that ${\gamma}$-PGA can act as an immunotherapeutic agent that exhibits a synergistic antitumor effect in combination with conventional chemotherapy.

Bridge Park International Design Competition and Its Implications on Contemporary Landscape Design (브리지 파크 국제설계경기에 나타난 현대 조경설계의 경향)

  • Kim Ah-Yeon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.5 s.112
    • /
    • pp.15-30
    • /
    • 2005
  • A deserted town once vibrant with active commercial activities around a railroad station now tries to find a way to escape from depression and revive its life with a renewed civic pride. An open space adjacent to the Main Street, the commercial district of Buzzards Bay, Massachusetts, is waiting to be transformed and reconfigured to be a new ecological park to boost the economy of the community. Bridge Park is 26-acre land abutting the Cape Cod Canal with a railroad bridge as a backdrop. The existing condition of the site with a small salt marsh, woodland, lawn, and the vestige of old railroad easement along with the proximity to the commercial district poses an interesting question of how to make a medium scaled ecological park within an urban context. This paper examines the winning design proposals for the Bridge Park submitted to the International Design Competition held in April, 2005. Six winning proposals were introduced and discussed in terms of categories related to the trend of contemporary landscape design such as; 1) ecological ordinariness and geometric figures, 2) topography and spatial imagination, 3) minimal programs and open put 4) time and process oriented design, 5) park and economic effects and 6) diagrammatic plan and photo montage. Bridge Park Design Competition confirms the complex characteristics representing the contemporary landscape design overcoming the dichotomy between nature and culture and the 'pastoral ecological design' and 'landscape as an art'. The Park becomes the activating agent for the community rejecting the conventional and passive role as a romantic picturesque landscape. Bridge Park International Design Competition is a meaningful event to test the idea of new ecological urban park, and to fine-tune the trend of the contemporary urban park design.

Monoterpenoid Loliolide Regulates Hair Follicle Inductivity of Human Dermal Papilla Cells by Activating the AKT/β-Catenin Signaling Pathway

  • Lee, Yu Rim;Bae, Seunghee;Kim, Ji Yea;Lee, Junwoo;Cho, Dae-Hyun;Kim, Hee-Sik;An, In-Sook;An, Sungkwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1830-1840
    • /
    • 2019
  • Loliolide is one of the most ubiquitous monoterpenoid compounds found in algae, and its potential therapeutic effect on various dermatological conditions via agent-induced biological functions, including anti-oxidative and anti-apoptotic properties, was demonstrated. Here, we investigated the effects of loliolide on hair growth in dermal papilla (DP) cells, the main components regulating hair growth and loss conditions. For this purpose, we used a three-dimensional (3D) DP spheroid model that mimics the in vivo hair follicle system. Biochemical assays showed that low doses of loliolide increased the viability and size of 3D DP spheroids in a dose-dependent manner. This result correlated with increases in expression levels of hair growth-related autocrine factors including VEGF, IGF-1, and KGF. Immunoblotting and luciferase-reporter assays further revealed that loliolide induced AKT phosphorylation, and this effect led to stabilization of β-catenin, which plays a crucial role in the hair-inductive properties of DP cells. Further experiments showed that loliolide increased the expression levels of the DP signature genes, ALP, BMP2, VCAN, and HEY1. Furthermore, conditioned media from loliolide-treated DP spheroids significantly enhanced proliferation and the expression of hair growth regulatory genes in keratinocytes. These results suggested that loliolide could function in the hair growth inductivity of DP cells via the AKT/β-catenin signaling pathway.

Effect of the SBA-15 template and KOH activation method on CO2 adsorption by N-doped polypyrrole-based porous carbons

  • Yuan, Hui;Jin, Biao;Meng, Long-Yue
    • Carbon letters
    • /
    • v.28
    • /
    • pp.116-120
    • /
    • 2018
  • Nitrogen-doped carbons have attracted much attention due to their novel application in relation to gas storage. In this study, nitrogen-doped porous carbons were synthesized using SBA-15 as a template, polypyrrole as the carbon and nitrogen precursor, and KOH as an activating agent. The effect of the activation temperature ($600-850^{\circ}C$) on the $CO_2$ adsorption capacity of the obtained porous carbons was studied. Characterization of the resulting carbons showed that they were micro-/meso-porous carbon materials with a well-developed pore structure that varied with the activation temperature. The highest surface area of $1488m^2g^{-1}$ was achieved at an activation temperature of $800^{\circ}C$ (AC-800). The nitrogen content of the activated carbon decreased from 4.74 to 1.39 wt% with an increase in the activation temperature from 600 to $850^{\circ}C$. This shows that nitrogen is oxidized and more easily removed than carbon during the activation process, which indicates that C-N bonds are more easily ruptured at higher temperatures. Furthermore, $CO_2$ adsorption isotherms showed that AC-800 exhibited the best $CO_2$ adsorption capacity of $110mg\;g^{-1}$ at 298 K and 1 bar.