• Title/Summary/Keyword: Activated biochar

Search Result 26, Processing Time 0.021 seconds

KOH activated pine tree needle leaves biochar as effective sorbent for VOCs in water

  • Theoneste, Nshirirungu;Kim, Moon Hyun;Solis, Kurt Louis;Park, Minoh;Hong, Yongseok
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.293-300
    • /
    • 2018
  • The removal of volatile organic compounds (VOCs) from water using KOH-activated pine tree needle leaves biochar is considered a cost effective and efficient process. In this study, pine tree needle leaves were mixed with 0, 50, 100 and 200% (KOH weight/feedstock weight) of KOH, respectively. Then, the mixture was pyrolyzed at $500^{\circ}C$ for 6 hrs. The adsorption characteristics of 10 VOCs to the biochar were tested. The results indicated that the removal efficiency of the KOH activated biochar was highest in 100% KOH-biochar. The VOC removal efficiencies of 50% and 200% KOH activated biochar were similar and the 0% KOH activated biochar showed the lowest VOC removal. The FTIR results showed that increasing the amount of KOH seemed to enhance the formation of various functional groups, such as -OH, -C=C, -O. The adsorption strength of 10 VOCs to the KOH activated biochar seemed to be increasing by the increase of the solubility of VOCs. This may suggest that the adsorption is taking place in hydrophilic sites of the biochar surface. The KOH activated pine tree needle leaves biochar can be an effective sorbent for VOCs removal in water and 100% KOH mixing seemed to provide better sorption capacity.

Engineered biochar from pine wood: Characterization and potential application for removal of sulfamethoxazole in water

  • Jang, Hyun Min;Yoo, Seunghyun;Park, Sunkyu;Kan, Eunsung
    • Environmental Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.608-617
    • /
    • 2019
  • The adsorption of sulfamethoxazole (SMX) onto a NaOH-activated pine wood-derived biochar was investigated via batch experiments and models. Surprisingly, the maximum adsorption capacity of activated biochar for SMX (397.29 mg/g) was superior than those of pristine biochars from various feedstock, but comparable to those of commercially available activated carbons. Elovich kinetic and Freundlich isotherm models revealed the best fitted ones for the adsorption of SMX onto the activated biochar indicating chemisorptive interaction occurred on surface of the activated biochar. In addition, the intraparticle diffusion limitation was thought to be the major barrier for the adsorption of SMX on the activated biochar. The main mechanisms for the activated biochar would include hydrophobic, π-π interactions and hydrogen bonding. This was consistent with the changes in physicochemical properties of the activated biochar (e.g., increase in sp2 and surface area, but decrease in the ratios of O/C and H/C).

Effect of KOH Concentrations and Pyrolysis Temperatures for Enhancing NH4-N Adsorption Capacity of Rice Hull Activated Biochar (KOH 농도 및 탄화온도가 왕겨 활성 바이오차의 NH4-N 흡착능 향상에 미치는 영향)

  • Kim, HuiSeon;Yun, Seok-In;An, NanHee;Shin, JoungDu
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.171-177
    • /
    • 2020
  • BACKGROUND: Recently, biomass conversion from agricultural wastes to carbon-rich materials such as biochar has been recognized as a promising option to maintain or increase soil productivity, reduce nutrient losses, and mitigate greenhouse gas emissions from the agro-ecosystem. This experiment was conducted to select an optimum conditions for enhancing the NH4-N adsorption capacity of rice hull activated biochar. METHODS AND RESULTS: For deciding the proper molarity of KOH for enhancing its porosity, biochars treated with different molarity of KOH (0, 1, 2, 4, 6, 8) were carbonized at 600℃ in the reactor. The maximum adsorption capacity was 1.464 mg g-1, and an optimum molarity was selected to be 6 M KOH. For the effect of adsorption capacity to different carbonized temperatures, 6 M KOH-treated biochar was carbonized at 600℃ and 800℃ under the pyrolysis system. The result has shown that the maximum adsorption capacity was 1.76 mg g-1 in the rice hull activated biochar treated with 6 M KOH at 600℃ of pyrolysis temperature, while its non-treated biochar was 1.17 mg g-1. The adsorption rate in the rice hull activated biochar treated with 6 M KOH at 600℃ was increased at 62.18% compared to that of the control. Adsorption of NH4-N in the rice hull activated biochar was well suited for the Langmuir model because it was observed that dimensionless constant (RL) was 0.97 and 0.66 at 600℃ and 800℃ of pyrolysis temperatures, respectively. The maximum adsorption amount (qm) and the bond strength constants (b) were 0.092 mg g-1 and 0.001 mg L-1, respectively, for the rice hull activated biochar treated with 6 M KOH at 600℃ of pyrolysis. CONCLUSION: Optimum condition of rice hull activated biochar was 6M KOH at 600℃ of pyrolysis temperature.

Review of the use of activated biochar for energy and environmental applications

  • Lee, Hyung Won;Kim, Young-Min;Kim, Seungdo;Ryu, Changkook;Park, Sung Hoon;Park, Young-Kwon
    • Carbon letters
    • /
    • v.26
    • /
    • pp.1-10
    • /
    • 2018
  • Biochar obtained from the thermal conversion of biomass has high potential as a substitute material for activated carbon and other carbon-based materials because it is economical, environmentally friendly, and carbon-neutral. The physicochemical properties of biochar can also be controlled by a range of activation methods such as physical, chemical, and hydrothermal treatments. Activated biochar can be used as a catalyst for the catalytic pyrolysis of a biomass and as an absorbent for the removal of heavy metal ions and atmospheric pollutants. The applications of biochar are also expanding not only as a key component in producing energy storage materials, such as supercapacitors, lithium ion batteries, and fuel cells, but also in carbon capture and storage. This paper reviews the recent progress on the activation of biochar and its diverse present and future applications.

Characteristics of Greenhouse Gas Emissions with Different Combination Rates of Activated Rice Hull Biochar during Aerobic Digestion of Cow Manure (왕겨 활성 바이오차 혼합 비율에 따른 우분 호기소화 시 온실가스 발생 특성)

  • Ro, YeonHee;Chung, WooJin;Chung, SeokJoo;Jung, InHo;Na, HongSik;Kim, MinSoo;Shin, JoungDu
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.222-227
    • /
    • 2020
  • BACKGROUND: Among the biomass conversion techniques of livestock manure, composting process is a method of decomposing organic matter through microorganisms, and converting it into fertilizer in soil. The aerobic composting process is capable of treating cow manure in large quantities, and produces greenhouse gas as CO2 and N2O, although it has economical benefit. By using the activated rice hull biochar, which is a porous material, it was intended to mitigate the greenhouse gas emissions, and to produce the compost of which quality was high. Objective of this experiment was to estimate CO2 and N2O emissions through composting process of cow manure with different cooperated biochar contents. METHODS AND RESULTS: The treatments of activated rice hull biochar were set at 0%, 5%, 10% and 15%, respectively, during composting cow manure. The CO2 emission in the control was 534.7 L kg-1, but was 385.5 L kg-1 at 15% activated rice hull biochar. Reduction efficiency of CO2 emission was estimated to be 28%. N2O emission was 0.28 L kg-1 in the control, but was 0.03 L min-1 at 15% of activated rice hull biochar, estimating about 89% reduction efficiency. CONCLUSION: Greenhouse gas emissions during the composting process of cow manure can be reduced by mixing with 15% of activated rice hull biochar for eco-friendly compost production.

Comparative Evaluation of Methylene Blue and Humic Acids Removal Efficiency Using Rice Husk Derived Biochars and Powdered Activated Carbon (쌀겨 바이오차와 분말 활성탄을 이용한 메틸렌 블루와 휴믹산 제거 효율 비교)

  • Lee, Juwon;Jeong, Eunju;Lee, Jungmin;Lee, Yong-Gu;Chon, Kangmin
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.483-492
    • /
    • 2021
  • This study evaluated the removal efficiencies of methylene blue (MB) and humic acids (HA) using a rice husk (RH) biochar and powdered activated carbon (PAC). The pseudo-second-order model better presented the adsorption of MB and HA onto a RH biochar than the pseudo-first-order model. Furthermore, better description of the adsorption behavior of MB and HA by the Langmuir isotherm model (R2 of the RH biochar: MB = 0.986 and HA = 0.984; R2 of PAC: MB = 0.997 and HA = 0.989) than the Freundlich isotherm model (R2 of the RH biochar: MB = 0.955 and HA = 0.965; R2 of PAC: MB = 0.982 and HA = 0.973) supports the assumption that monolayer adsorption played key roles in the removal of MB and HA using the RH biochar and PAC. Batch experiments were performed on the effects of dosage, temperature, and pH. For all experiments, PAC showed higher efficiencies than RH biochar and MB adsorption efficiencies were higher than those of HA. Adsorption efficiencies increased with increasing amounts of adsorbents and temperature. As the pH increased, adsorption efficiencies of MB were increased while adsorption efficiencies of HA were decreased.

Application of major plant nutrient releasing model and N2O emissions to the leachate from the mixtures of rice hull biochar and organic fertilizer materials (왕겨 바이오차와 유기농자재 혼합에 따른 주요 양분 용출 모델 적용 및 N2O 배출량 산정)

  • DongKeon Lee;JaeLee Choi;ChangKi Shim;JooHee Nam;SeokIn Youn;JeongSeok Song;Dogyun Park;JoungDu Shin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.43-53
    • /
    • 2023
  • This batch experiment evaluated the impacts of major plant nutrient releases by applying the modified Hyperbola model on the leachates and N2O emissions from incorporated rice hull biochar with organic fertilizer materials. The treatments consisted of the control as incorporated with organic fertilizer materials, the incorporated rice hull biochar with organic fertilizer materials, and the incorporated plasma-activated rice hull biochar with organic fertilizer materials under redox conditions. The results indicated that the maximum release amount of NH4-N was 3486.3 mg L-1 in the control, and their reduction rates of NH4-N, NO3-N, PO4-P, and K were 8.0%, 17.5% 44.3.0% and 8.7%, respectively, relative to the control. In the control, the highest soluble amount of PO4-P was 681.0 mg L-1. The estimations for accumulated NH4-N, NO3-N, PO4-P, and K-releases in all the treatments were significantly (p<0.01) fitted with a modified Hyperbola model. For greenhouse gas emissions, the lowest cumulative N2O was 340.4 mg kg-1 in the soil incorporated with plasma-activated rice hull biochar, and the reduction rates were 27.8% and 86.4% in the rice hull biochar and plasma-activated rice hull biochar treatments, respectively, compared to the control. Therefore, it concluded that the incorporated rice hull biochar can be especially useful for controlling PO4-P release and N2O emissions for bio-fertilizer applications.

Conductive Performance of Mortar Containing Fe-Activated Biochar (Fe에 의해 활성화된 목질계 바이오차를 혼입한 모르타르의 전도성능)

  • Jin-Seok Woo;Ai-Hua Jin;Won-Chang Choi;Soo-Yeon Seo;Hyun-Do Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.27-34
    • /
    • 2024
  • This study was conducted to examine the feasibility of using Fe-activated wood-derived biochar as a conductive filler for manufacturing cement-based strain sensor. To evaluate the compressive and electrical properties of cement composite with 3% Fe-activated biochar, three cubic specimens of size 50 x 50 x 50mm3 and three prismatic cement-based sensors of size 40 x 40 x 80mm3 were prepared respectively. The four-probe method of electrical resistance measurement was used for cement-based sensors. For cement-based sensors with FE-activated biochar, the conductive performance such as electrical resistance and impedance under different water content and repeated compression was investigated. Results showed that the fractional changes in the DC electrical resistivity of cement-based sensors increase with increasing time and the maximum fractional changes in the resistivity decrease with increasing the moisture contents during 900s. At moisture content of 7.5% range, the conductive performance of cement composite including 3% Fe-activated biochar as a conductive filler showed the most stable, while the strain detection ability tended to decrease somewhat as the repeated compressive stress increased between repeated compressive strain and fractional change in resistivity (FCR).

SnO2 Mixed Banana Peel Derived Biochar Composite for Supercapacitor Application

  • Kaushal, Indu;Maken, Sanjeev;Kumar Sharma, Ashok
    • Korean Chemical Engineering Research
    • /
    • v.56 no.5
    • /
    • pp.694-704
    • /
    • 2018
  • Novel $SnO_2$ mixed biochar composite was prepared from banana peel developed as electrode material for supercapacitor using simple chemical co-precipitation method. The physiochemical and morphological properties of activated composite $SnO_2$ mixed biochar were investigated with XRD, FTIR, UV-vis, FESEM and HRTEM. The composite accounts for outstanding electrochemical behavior such as high specific capacitance, significant rate capability and leading to good cycle retention up to 3500 cycles when used as electrode material for supercapacitors. Highly permeable $SnO_2$ mixed biochar derived from banana peel exhibited maximum specific capacitance of $465F\;g^{-1}$ at a scan rate of $10mV\;s^{-1}$ by cyclic voltammetry (CV) and $476Fg^{-1}$ at current density of $0.15Ag^{-1}$ by charge discharge studies significantly higher about 47% than previously reported identical work on banana peel biochar.

Fabrication of Metal-biochar Composite through CO2 Assisted Co-pyrolysis of Chlorella and Red Mud and Its Application for Persulfate Activation (녹조류와 적니의 이산화탄소환경 공동열분해를 통한 탄소-철 복합체 생성 및 과황산염 활성화를 통한 수중 염료 제거)

  • Jang, Hee-Jin;Kwon, Gihoon;Yoon, Kwangsuk;Song, Hocheol
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.1
    • /
    • pp.31-38
    • /
    • 2022
  • The common algae and industrial waste, chlorella and red mud, were co-pyrolyzed in carbon dioxide condition to fabricate iron-biochar composite. In order to investigate the direct effect of chlorella and red mud in the syngas generation and the property of biochar, experiments were performed using mixture samples of chlorella and red mud. The evolution of flammable gasses (H2, CH4, CO) was monitored during pyrolysis. The produced biochar composite was employed as a catalyst for persulfate activation for methylene blue removal. BET analysis indicated that the iron-biochar composite mainly possessed meso- and macropores. The XRD analysis revealed that hematite (Fe2O3) contained in red mud was transformed to Fe3O4 during co-pyrolysis. The composite effectively activated persulfate and removed methylene blue. Among the composite samples, the composite fabricated from the mixture composed of 1:2 chlorella:red mud showed the best performance in syngas generation and methylene blue removal.