In this paper, we propose action-learning method based on teaching. By adopting this method, we can handle an exception case which cannot be handled in an Ethology-based Action SElection mechanism. Our proposed method is verified by employing AIBO robot as well as EASE platform.
International Journal of Control, Automation, and Systems
/
제6권6호
/
pp.904-914
/
2008
An action-selection-mechanism(ASM) has been proposed to work as a fully connected finite state machine to deal with sequential behaviors as well as to allow a state in the task program to migrate to any state in the task, in which a primitive node in association with a state and its transitional conditions can be easily inserted/deleted. Also, such a primitive node can be learned by a shortest path-finding-based reinforcement learning technique. Specifically, we define a behavioral motivation as having state-dependent value as a primitive node for action selection, and then sequentially construct a network of behavioral motivations in such a way that the value of a parent node is allowed to flow into a child node by a releasing mechanism. A vertical path in a network represents a behavioral sequence. Here, such a tree for our proposed ASM can be newly generated and/or updated whenever a new behavior sequence is learned. To show the validity of our proposed ASM, experimental results of a mobile robot performing the task of pushing- a- box-in to- a-goal(PBIG) will be illustrated.
An action-selection-mechanism is proposed to deal with sequential behaviors, where associations between some of stimulus and behaviors will be learned by a shortest-path-finding-based reinforcement team ins technique. To be specific, we define behavioral motivation as a primitive node for action selection, and then sequentially construct a network with behavioral motivations. The vertical path of the network represents a behavioral sequence. Here, such a tree fur our proposed ASM can be newly generated and/or updated. whenever a new sequential behaviors is learned. To show the validity of our proposed ASM, some experimental results on a "pushing-box-into-a-goal task" of a mobile robot will be illustrated.
For action selection as well as learning, simple associations between stimulus and response have been employed in most of literatures. But, for a successful task accomplishment, it is required that an animat can learn and express behavioral sequences. In this paper, we propose a novel action-selection-mechanism to deal with sequential behaviors. For this, we define behavioral motivation as a primitive node for action selection, and then hierarchically construct a network with behavioral motivations. The vertical path of the network represents behavioral sequences. Here, such a tree for our proposed ASM can be newly generated and/or updated, whenever a new sequential behaviors is learned. To show the validity of our proposed ASM, three 2-D grid world simulations will be illustrated.
본 논문에서는 로봇을 하나의 에이전트로 보고 로봇에 필요한 기능-환경인지, 지능, 행동-등을 부-에이전트로 하는 로봇 구조를 제안하였다. 각각의 부 에이전트들은 로봇 기능의 기초단위를 구성하는 마이크로 에이전트로 구성된다. 로봇의 제어 구조는 행위기반 반사행동 제어 형태와 행동 선택 에이전트로 구성되며, 행동 선택 에이전트에서의 행동 선택은 행동 우선순위, 수행성능, 강화학습에 의한 학습기능을 부가하였다. 제시된 로봇 구조는 다중 부-에이전트 구조로 각각의 기능에 대하여 지능을 부여하기 쉬우며 다중 로봇 제어를 위한 새로운 접근 방법이다. 제시된 로봇을 장애물을 회피와 chaotic한 탐색을 목표로 하여 모의실험을 수행하였으며 8bit 마이크로 콘트롤러를 이용하여 제작 실험하였다.
The purpose of this study is to analyze the action learning lesson about the improvement process of the job support program of P university students. As a research method, we applied the related classes during the semester to the students who took courses in the course of 'Human Resource Development', which is a subject of P university, and analyzed the learner's reflection journal, interview data. As a result of the research, we went through the problem selection stage, the team construction and the team building stage. And then we searched for the root cause of the problem, clarified the problem, derived the possible solution, determined the priority and created the action plan. There are 10 solutions to the practical problems of poor job camps. Through two interviews with field experts it offered final solutions focused on promoting employment and Camp students participate in the management of post-employment into six camps. According to the first rank, job board integration, vendor selection upon student feedback, reflecting improved late questionnaire, public relations utilizing KakaoTalk, recruiting additional selection criteria, the camp provides recorded images in order. The results of this study suggest that the university's employment support program will strengthen the competitiveness of students' employment and become the basic data for the customized employment support program.
In multi robot environment, the action selection strategy is important for the cooperation and coordination of multi agents. However the overlap of actions selected individually by each robot makes the acquisition of cooperation behaviors less efficient. In addition to that, a complex and dynamic environment makes cooperation even more difficult. So in this paper, we propose a control algorithm which enables each robot to determine the action for the effective cooperation in multi-robot system. Here, we propose cooperative algorithm with reinforcement learning to determine the action selection In this paper, when the environment changes, each robot selects an appropriate behavior strategy intelligently. We employ ...
The voting algorithm for action selection performs self-improvement by Reinforcement learning algorithm in the dynamic environment. The proposed voting algorithm improves the navigation of the robot by adapting the eligibility of the behaviors and determining the Command Set Generator (CGS). The Navigator that using a proposed voting algorithm corresponds to the CGS for giving the weight values and taking the reward values. It is necessary to decide which Command Set control the mobile robot at given time and to select among the candidate actions. The Command Set was learnt online by means as Q-learning. Action Selector compares Q-values of Navigator with Heterogeneous behaviors. Finally, real-world experimentation was carried out. Results show the good performance for the selection on command set as well as the convergence of Q-value.
본 연구의 목적은 교육프로그램의 액션러닝 프로세스를 분석한 연구로서, 과정별 액션러닝 프로세스의 오리엔테이션, 과제의 명료화, 자료 활동, 대안의 모색과 실행 안 선정, 실행과 결과를 파악한 연구이다. 고위공직 후보자 액션러닝 과정은 정책현장 방문, 체험사례 분석 등을 통한 성과가 제고되어야 하며, 포스코 엔지니어 액션러닝 과정은 액션러닝 문제해결에서 습득한 지식을 회사의 지적자산으로 체계화 하는 것이 중요하며, 이(異) 업종 융합 최고경영자 액션러닝 과정은 자사의 제품을 소비하는 소비자 그룹이나 주주 등을 가상의 과제후원자로 정하여 그들의 의견을 통해 방향이 설정되어야 한다.
shopbot이란 온라인상의 판매자로부터 상품에 대한 가격과 품질에 관한 정보를 자동적으로 수집함으로써 소비자의 만족을 최대화하는 소프트웨어 에이전트이다 이러한 shopbot에 대응해서 인터넷상의 판매자들은 그들에게 최대의 이익을 가져다 줄 수 있는 에이전트인 pricebot을 필요로 할 것이다. 본 논문에서는 pricebot의 가격결정 알고리즘으로 비 모델 강화 학습(model-free reinforcement learning) 방법중의 하나인 Q-학습(Q-learning)을 사용한다. Q-학습된 에이전트는 근시안적인 최적(myopically optimal 또는 myoptimal) 가격 결정 전략을 사용하는 에이전트에 비해 이익을 증가시키고 주기적 가격 전쟁(cyclic price war)을 감소시킬 수 있다. Q-학습 과정 중 Q-학습의 수렴을 위해 일련의 상태-행동(state-action)을 선택하는 것이 필요하다. 이러한 선택을 위해 균일 임의 선택방법 (Uniform Random Selection, URS)이 사용될 경우 최적 값의 수렴을 위해서 Q-테이블을 접근하는 회수가 크게 증가한다. 따라서 URS는 실 세계 환경에서의 범용적인 온라인 학습에는 부적절하다. 이와 같은 현상은 URS가 최적의 정책에 대한 이용(exploitation)의 불확실성을 반영하기 때문에 발생하게 된다. 이에 본 논문에서는 보조 마르코프 프로세스(auxiliary Markov process)와 원형 마르코프 프로세스(original Markov process)로 구성되는 혼합 비정적 정책 (Mixed Nonstationary Policy, MNP)을 제안한다. MNP가 적용된 Q-학습 에이전트는 original controlled process의 실행 시에 Q-학습에 의해 결정되는 stationary greedy 정책을 사용하여 학습함으로써 auxiliary Markov process와 original controlled process에 의해 평가 측정된 최적 정책에 대해 1의 확률로 exploitation이 이루어질 수 있도록 하여, URS에서 발생하는 최적 정책을 위한 exploitation의 불확실성의 문제를 해결하게 된다. 다양한 실험 결과 본 논문에서 제한한 방식이 URS 보다 평균적으로 약 2.6배 빠르게 최적 Q-값에 수렴하여 MNP가 적용된 Q-학습 에이전트가 범용적인 온라인 Q-학습이 가능함을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.