• 제목/요약/키워드: Action Potentials

검색결과 205건 처리시간 0.03초

Anti-Inflammatory Effects of N1-Benzyl-4-Methylbenzene-1,2-Diamine (JSH-21) Analogs on Nitric Oxide Production and Nuclear Factor-kappa B Transcriptional Activity in Lipopolysaccharide-Stimulated Macrophages RAW 264.7

  • Min, Kyung-Rak;Shin, Hyun-Mo;Lee, Jee-Hyun;Kim, Byung-Hak;Chung, Eun-Yong;Jung, Sang-Hun;Kim , Young-Soo
    • Archives of Pharmacal Research
    • /
    • 제27권10호
    • /
    • pp.1053-1059
    • /
    • 2004
  • $N^1$-Benzyl-4-methylbenzene-1,2-diamine (JSH-21) and its analogs were chemically synthesized and their anti-inflammatory potentials investigated. JSH-21 inhibited nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated macrophages RAW 264.7 in a dose-dependent manner, with an $IC_{50}$ value of 9.2 ${\mu}M$, where pyrrolidine dithiocarbamate and parthenolide as positive controls exhibited $IC_{50}$ values of 29.3 and 3.6 ${\mu}M$, respectively. The inhibitory effect of JSH-21 on the NO production was attributable to its down-regulatory action on LPS-inducible NO synthase (iNOS), which was documented by iNOS promoter activity. In the mechanism of the anti-inflammatory action, JSH-21 exhibited inhibitory effects on LPS-induced DNA binding activity and transcriptional activity of nuclear factor-kappa B (NF-$_KB$). Structural analogs of JSH-21 also inhibited both the LPS-induced NO production and NF-$_KB$). transcriptional activity, where diamine substitution at positions 1 and 2 of JSH-21 seems to play an important role in the anti-inflammatory activity.

Effect of Gamma-Aminobutyric Acid on the Gustatory Nucleus Tractus Solitarius in Rats

  • Kim, Mi-Won;Park, Ha-Ok;Pahng, Mong-Sook;Park, Sang-Won;Kim, Sun-Hun;Jung, Ji-Yeon;Jeong, Yeon-Jin;Kim, Won-Jae
    • International Journal of Oral Biology
    • /
    • 제30권3호
    • /
    • pp.91-98
    • /
    • 2005
  • Gamma-aminobutyric acid (GABA) is known as an inhibitory neurotransmitter in the neurons of the central nervous system. However, its detailed action mechanisms in the rostral gustatory zone of the nucleus tractus solitarius (rNTS) have not been established. The present study was aimed to investigate the distribution, role and action mechanisms of GABA in rNTS. Membrane potentials were recorded by whole cell recordings in isolated brain slices of the rat medulla. Superfusion of GABA resulted in a concentration-dependent reduction in input resistance in the neurons in rNTS. The change in input resistance ws accompanied by response to a depolarizing pulse were diminished by GABA. Superfusion of the slices with either $GABA_A$ agonist, muscimol, $GABA_B$ agonist, baclofen or $GABA_C$ agonist, TACA, decreased input resistance and reduced the nerve activity in association with membrane hyperpolarization. It is suggested that inhibitory signals playa role in sensory processing by the rNTS, in that GABA actions occur through activation of $GABA_A,\;GABA_B\;and\;GABA_C$ receptor. These results suggest that GABA has an inhibitory effect on the rNTS through an activation of $GABA_A,\;GABA_B\;and\;GABA_C$ receptors and that the GABAergic inhibition probably plays an important role in sensory processing by the rNTS.

Morphine이 굴근반사(Flexion Reflex)에 미치는 영향 (Morphine Sensitive Components of the Flexion Reflex)

  • 정진모;백광세;남택상;김인교;강두희
    • The Korean Journal of Physiology
    • /
    • 제15권2호
    • /
    • pp.67-71
    • /
    • 1981
  • Experiments were conducted to test morphine sensitivity of the flexion reflex in the anemic decerebrate cats. Animals were immobilized with gallamine triethiodide(Flxaedil) and were artificially ventilated. The sural nerve was electrically stimulated(20V, 0.5 msec) and the flexion reflex was obtained by recording compound action potentials from the nerve innervated to the semitendinosus muscle. Intravenous injection of morphine $(0.5{\sim}2.0\;mg/kg)$ was found to have following effects on the flexion reflex. 1) Morphine tended to depress the early component of the flexion reflex and the effect was widely variable between animal preparations. 2) Morphine significantly depressed the late component of the flexion reflex, the effect being proportional to the dose of morphine. 3) The morphine effect on the flexion reflex was reversed by a small dose of naloxone hydrochloride$(0.025{\sim}0.1\;mg/kg)$. 4) Naloxone hydrochloride alone did not appear to facilitate the flexion reflex. 5) The main site for the morphine action was found to be the brain stem. From these results and those reported in literatures, we conclude that the late component of the flexion reflex well represents the pain sensation, thus the late component of the flexion reflex can be used as a reasonable subjective index of pain in experimental animals.

  • PDF

Dual Effect of Dynorphin A on Single-Unit Spike Potentials in Rat Trigeminal Nucleus

  • Lee, Keun-Mi;Han, Hee-Seok;Jang, Jae-Hee;Ahn, Doug-Kuk;Park, Jae-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권3호
    • /
    • pp.213-221
    • /
    • 2001
  • The amygdala is known as a site for inducing analgesia, but its action on the trigeminal nucleus has not been known well. Little information is available on the effect of dynorphin on NMDA receptor-mediated electrophysiological events in the trigeminal nucleus. The purpose of this study was to investigate the changes in the single neuron spikes at the trigeminal nucleus caused by the amygdala and the action of dynorphin on the trigeminal nucleus. In the present study, extracellular single unit recordings were made in the dorsal horn of the medulla (trigeminal nucleus caudalis) and the effects of microiontophoretically applied compounds were examined. When [D-Ala2, N-Me-Phe4, Glys5-ol]enkephalin (DAMGO, 10-25 mM), a ${\mu}-opioid$ receptor agonist, was infused into the amygdala, the number of NMDA-evoked spikes at the trigeminal nucleus decreased. However, the application of naloxone into the trigeminal nucleus while DAMGO being infused into the amygdala increased the number of spikes. Low dose (1 mM) of dynorphin in the trigeminal nucleus produced a significant decrease in NMDA-evoked spikes of the trigeminal nucleus but the NMDA-evoked responses were facilitated by a high dose (5 mM) of dynorphin. After the ${\kappa}$ receptors were blocked with naloxone, dynorphin induced hyperalgesia. After the NMDA receptors were blocked with AP5, dynorphin induced analgesia. In conclusion, dynorphin A exerted dose-dependent dual effects (increased & decreased spike activity) on NMDA-evoked spikes in the trigeminal nucleus. The inhibitory effect of the dynorphin at a low concentration was due to the activation of ${\kappa}$ receptors and the excitatory effect at a high concentration was due to activation of NMDA receptors in the trigeminal neurons.

  • PDF

Modeling of Arrhythmogenic Automaticity Induced by Stretch in Rat Atrial Myocytes

  • Youm, Jae-Boum;Leem, Chae-Hun;Zhang, Yin Hua;Kim, Na-Ri;Han, Jin;Earm, Yung-E.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제12권5호
    • /
    • pp.267-274
    • /
    • 2008
  • Since first discovered in chick skeletal muscles, stretch-activated channels (SACs) have been proposed as a probable mechano-transducer of the mechanical stimulus at the cellular level. Channel properties have been studied in both the single-channel and the whole-cell level. There is growing evidence to indicate that major stretch-induced changes in electrical activity are mediated by activation of these channels. We aimed to investigate the mechanism of stretch-induced automaticity by exploiting a recent mathematical model of rat atrial myocytes which had been established to reproduce cellular activities such as the action potential, $Ca^{2+}$ transients, and contractile force. The incorporation of SACs into the mathematical model, based on experimental results, successfully reproduced the repetitive firing of spontaneous action potentials by stretch. The induced automaticity was composed of two phases. The early phase was driven by increased background conductance of voltage-gated $Na^+$ channel, whereas the later phase was driven by the reverse-mode operation of $Na^+/Ca^{2+}$ exchange current secondary to the accumulation of $Na^+$ and $Ca^{2+}$ through SACs. These results of simulation successfully demonstrate how the SACs can induce automaticity in a single atrial myocyte which may act as a focus to initiate and maintain atrial fibrillation in concert with other arrhythmogenic changes in the heart.

동방결절 전기적 특성에 대한 $Ca^{2+}$ 효과의 온도에 따른 변화 (Temperature-dependency of $Ca^{2+}$ Effect on the Electrical Activity of Rabbit SA Node)

  • 호원경;김기환;황상익
    • The Korean Journal of Physiology
    • /
    • 제21권1호
    • /
    • pp.1-12
    • /
    • 1987
  • There is evidence that the effect of extracellular $Ca^{2+}$ on heart rate is temperature-dependent: at $38^{\circ}C$ excess $Ca^{2+}$ induces positive chronotropic response, whereas at $30^{\circ}C$ there is no significant chronotropic effect of $Ca^{2+}$. The cause of this temperature-dependency, however, remains still unclear. Therefore, this study was undertaken to investigate the chronotropic effect of external $Ca^{2+}$ at different temperature in the isolated rabbit atria and in the small strips of SA node cut perpendicularly to crista terminalis. In the isolated atria, the $Ca^{2+}$ effect was temperature-dependent: at $35^{\circ}C$ excess $Ca^{2+}$ evoked positive chronotropic response, while at $30^{\circ}C$ there was no significant changes in sinus rate. On the contrary, in the small SA strips external $Ca^{2+}$ induced negative chronotropic effect. At $35^{\circ}C$ changes in $Ca^{2+}$ concentration from 2 to 4, 6, and 10 mM decreased the sinus rate by $2.7{\pm}1.6%$, $11.2{\pm}3.7%$ and $23.2{\pm}8.1%$ respectively. Lowering the temperature to $30^{\circ}C$, the negative chronotropic effect of $Ca^{2+}$ became greater. With intracellular microelectrodes transmembrane potential was recorded in the small SA strips at $30^{\circ}C$, $35^{\circ}C$ and $38^{\circ}C$. As temperature increased from 30 to $38^{\circ}C$, sinus rate was accelerated by $13/min/^{\circ}C$, $APD_{50}$(action ptential duration from peak to 50% repolarization) decreased by $5\;msec/^{\circ}C$, and amplitude of action potential was slightly decreased. With an increase in $Ca^{2+}$ concentrations from 0.5 to 6 mM, overshoot increased and MDP decreased. These $Ca^{2+}$ effects on the overshoot and MDP of action potentials were not altered by temperature. But the $Ca^{2+}$ effects on the rates of diastolic depolarization, systolic depolarization and repolarization were modified by temperature. Discrpancy of the chronotropic effects of $Ca^{2+}$ between isolated atria and small SA strips was discussed.

  • PDF

반강성 특성이 반영된 전정 유모세포 모델의 활동전위 생성에 관한 연구 (A Study on the Action Potential Generations of the Vestibular Hair Cell Model with Negative Stiffness Feature)

  • 김동영;홍기환;김규성;이상민
    • 전자공학회논문지
    • /
    • 제51권9호
    • /
    • pp.190-199
    • /
    • 2014
  • 본 논문에서는 섬모 번들 특성 모델과 통합 전정 유모세포 모델을 제안한다. 기존 전정기관 모델에 관한 연구는 외력이 없는 상태에서 전정 유모세포의 섬모 번들이 가지는 특성이나 시냅스에서 발생하는 활동전위만을 대상으로 진행되었으며 섬모번들의 고유 특성을 고려한 전정신경의 활동전위에 대한 연구는 이루어지지 않았다. 제안된 통합 전정 유모세포 모델은 외력을 반영하였고 서로 다른 규칙성을 가진 유모세포에 대해 각각의 섬모번들의 반강성 특성을 고려하였고 이를 기존의 외력없는 모델과 비교하였다. 그 결과 외부 자극의 변화에 따른 주파수 변화가 큰 불규칙적 신경섬유와 중간규칙적 신경섬유에서는 반강성 구간의 감소를 보였으나 그렇지 않은 규칙적 신경섬유에서는 기존의 반강성 특성과 유사한 특성을 보여주었다. 또한 제안된 전정 유모세포 모델을 통해 11개의 주파수 대역에서의 모델링 데이터와 기존의 동물 실험 데이터가 거의 일치함을 보여 주었다. 제안된 섬모 번들 특성 모델이 적절히 모델링되었음이 확인된다.

신생아 종아리신경병증 1례 (A case of neonatal peroneal neuropathy with intrauterine onset)

  • 이상수;심지윤;김미정
    • Clinical and Experimental Pediatrics
    • /
    • 제50권6호
    • /
    • pp.585-587
    • /
    • 2007
  • 출생시에 나타나는 신생아 종아리신경병증은 아직 국내에는 보고된 적이 없는 매우 드문 질환으로, 대부분이 자연 치유되는 양성 경과를 취한다. 신생아의 홑신경병증은 대개 산과적 합병증이지만, 출생 전 원인도 고려하여야 한다. 저자들은 볼기태위로 인해 제왕절개술로 만기 태어난 신생아에서 발견된 발처짐을 보고한다. 생후 4일째 시행한 전기생리학적 검사에서 종아리신경의 복합근육활동전위 소실과 앞정간근과 긴엄지폄근의 탈신경전위가 관찰된 것으로 미루어 자궁 내에서 발병한 종아리신경병증으로 추정한다. 조기에 전기생리학적검사를 시행하고 추적검사를 하면 발병시기와 병리적 기전 및 예후를 판단하는데 도움이 된다.

Involvement of D2 Receptor on Dopamine-induced Action in Interstitial Cells of Cajal from Mouse Colonic Intestine

  • Zuoa, Dong Chuan;Shahia, Pawan Kumar;Choia, Seok;Jun, Jae-Yeoul;Park, Jong-Seong
    • 대한의생명과학회지
    • /
    • 제18권3호
    • /
    • pp.218-226
    • /
    • 2012
  • Dopamine is an enteric neurotransmitter that regulates gastrointestinal motility. This study was done to investigate whether dopamine modulates spontaneous pacemaker activity in cultured interstitial cells of Cajal (ICCs) from mouse using whole cell patch clamp technique, RT-PCR and live $Ca^{2+}$ imaging analysis. ICCs generate pacemaker inward currents at a holding potential of -70 mV and generate pacemaker potentials in current-clamp mode. Dopamine did not change the frequency and amplitude of pacemaker activity in small intestinal ICCs. On the contrary dopamine reduced the frequency and amplitude of pacemaker activity in large intestinal ICCs. RT-PCR analysis revealed that Dopamine2 and 4-receptors are expressed in c-Kit positive ICCs. Dopamine2 and 4 receptor agonists inhibited pacemaker activity in large intestinal ICCs mimicked those of dopamine. Domperidone, dopamine2 receptor antagonist, increased the frequency of pacemaker activity of large intestinal ICCs. In $Ca^{2+}$-imaging, dopamine inhibited spontaneous intracellular $Ca^{2+}$ oscillations of ICCs. These results suggest that dopamine can regulate gastrointestinal motility through modulating pacemaker activity of large intestinal ICCs and dopamine effects on ICCs are mediated by dopamine2 receptor and intracellular $Ca^{2+}$ modulation.

조지훈의 시 「아침」의 3번째 행에 나타나는 문학치료 부호화 연구 (A Study on the Encoding of Literature Therapy in the Third Line of the Poem 'Morning' Written by Cho Ji-Hoon)

  • 박인과
    • 문화기술의 융합
    • /
    • 제3권4호
    • /
    • pp.123-129
    • /
    • 2017
  • 본 연구는 감정의 이동이나 발생과정을 알아 문학치료에 활용하고자 하는 데에 목적이 있다. 그래서 문학작품을 대할 때 인체에서 작동되는 감정의 유로에 대한 과정을 밝혀보고자 하였다. 그 결과 감정은 시어들을 읊을 때 인체에서 감정 코드들이 작동하여 서로 끌어당겨 아미노산의 위치로 집결됨을 확인하였다. 그러면서 아미노산의 합성에 촉매 역할을 하는 것이 감정이라고 판단되었다. 물론 이는 인문학적이고 융합적인 논증이며, 의학적으로 증명된 사실은 아니다. 그러나, 이러한 연구가 계속된다면 인간을 보다 건강하게 사유케 하는 데에 기여할 것으로 사료된다.