• Title/Summary/Keyword: Actin mRNA

Search Result 134, Processing Time 0.034 seconds

LIMK1/2 are required for actin filament and cell junction assembly in porcine embryos developing in vitro

  • Kwon, Jeongwoo;Seong, Min-Jung;Piao, Xuanjing;Jo, Yu-Jin;Kim, Nam-Hyung
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.10
    • /
    • pp.1579-1589
    • /
    • 2020
  • Objective: This study was conducted to investigate the roles of LIM kinases (LIMK1 and LIMK2) during porcine early embryo development. We checked the mRNA expression patterns and localization of LIMK1/2 to evaluate their characterization. We further explored the function of LIMK1/2 in developmental competence and their relationship between actin assembly and cell junction integrity, specifically during the first cleavage and compaction. Methods: Pig ovaries were transferred from a local slaughterhouse within 1 h and cumulus oocyte complexes (COCs) were collected. COCs were matured in in vitro maturation medium in a CO2 incubator. Metaphase II oocytes were activated using an Electro Cell Manipulator 2001 and microinjected to insert LIMK1/2 dsRNA into the cytoplasm. To confirm the roles of LIMK1/2 during compaction and subsequent blastocyst formation, we employed a LIMK inhibitor (LIMKi3). Results: LIMK1/2 was localized in cytoplasm in embryos and co-localized with actin in cell-to-cell boundaries after the morula stage. LIMK1/2 knockdown using LIMK1/2 dsRNA significantly decreased the cleavage rate, compared to the control group. Protein levels of E-cadherin and β-catenin, present in adherens junctions, were reduced at the cell-to-cell boundaries in the LIMK1/2 knockdown embryos. Embryos treated with LIMKi3 at the morula stage failed to undergo compaction and could not develop into blastocysts. Actin intensity at the cortical region was considerably reduced in LIMKi3-treated embryos. LIMKi3-induced decrease in cortical actin levels was attributed to the disruption of adherens junction and tight junction assembly. Phosphorylation of cofilin was also reduced in LIMKi3-treated embryos. Conclusion: The above results suggest that LIMK1/2 is crucial for cleavage and compaction through regulation of actin organization and cell junction assembly.

Expression of Growth Differentiation Factor-9 in the Mouse Ovaries at Different Developmental Stages (생쥐 난소의 발생단계에 따른 Growth Differentiation Factor-9의 유전자 발현)

  • 윤세진;이경아;고정재;차광열
    • Development and Reproduction
    • /
    • v.3 no.1
    • /
    • pp.95-100
    • /
    • 1999
  • Growth differentiation factor-9 (GDF-9) is a member of the transforming growth factor $\beta$ (TGF-$\beta$) superfamily. It has been known that GDF-9 is a growth factor having a crucial role in normal folliculogenesis and its expression is oocyte-specific. The present study was aimed to elucidate the expression of GDF-9 mRNA in the mouse primordial follicles as well as in the other developmental stages. The semiquantitative analysis of GDF-9 mRNA expression was conducted. Total RNA was extracted from the ICR mice ovaries at gestational day 19, postnatal day 1, day 10, day 21, and day 28, and RT-PCR was performed to measure GDF-9 and $\beta$-actin mRNA levels. Level of GDF-9 mRNA were normalized against the level of $\beta$-actin mRNA, and compared among different stages. GDF-9 mRNA was detected in all samples including the fetal ovaries that mainly consists of primordial follicles. The highest level of mRNA was observed in ovaries obtained at day 10 that mainly consists of growing follicles. The present result suggests that GDF-9 may play an important role in the early stage of folliculogenesis.

  • PDF

Quercetin Reduces Chemotactic Activity of Porcine Peripheral Blood Polymorphonuclear Cells

  • Hwa, Gyeong-Rok;Ahn, Changhwan;Kim, Hakhyun;Kang, Byeong-Teck;Jeung, Eui-Bae;Yang, Mhan-Pyo
    • Journal of Veterinary Clinics
    • /
    • v.39 no.2
    • /
    • pp.51-58
    • /
    • 2022
  • Quercetin, a flavonoid found in fruits and vegetables, exhibits a strong anti-inflammatory activity. The objective of this study was to examine the effect of quercetin on chemotactic activity of peripheral blood polymorphonuclear cells (PMNs) to culture supernatant from peripheral blood mononuclear cells (PBMCs) stimulated with lipopolysaccharide (LPS). In addition, we determined whether this effect is related to interleukin (IL)-8 and changes in cytoskeleton. The chemotactic activity of PMNs was evaluated by a modified Boyden chamber assay. Total cellular filamentous (F)-actin levels were measured by method of fluorescence microscopy. The levels of IL-8 mRNA and protein were measured by real time polymerase reaction method and enzyme-linked immunosorbent assay, respectively. Quercetin (0-50 µM) itself has no chemoattractant effect for PMNs. The culture supernatant from PBMCs (2 × 106 cells/mL) treated with LPS (1 ㎍/mL) showed remarkable increase in chemotaxis of PMNs. However, this effect was reduced dose-dependently by treatment with quercetin. In addition, PBMCs treated with LPS revealed enhanced levels in IL-8 protein and mRNA. Co-treatment of LPS with quercetin (50 µM) in PBMCs decreased IL-8 production and expression. Treatment of quercetin (0-50 µM) on PMNs to rpIL-8 (10 nM) decreased dose-dependently the chemotactic activity of PMNs. Treatment of quercetin on PMNs to IL-8 also reduced their total cellular F-actin level. These results suggested that quercetin attenuates chemotactic activity of PMNs, which is mediated by down-regulation of IL-8 production from LPS-stimulated PBMCs and inhibition of F-actin polymerization in PMNs.

Expression of Peroxiredoxin I and II in Neonatal and Adult Rat Lung Exposed to Hyperoxia (고산소에 노출된 신생 백서와 성숙 백서에 있어서Peroxiredoxin I과 II의 발현)

  • Lee, Chang-Youl;Kim, Hyung-Jung;Ahn, Chul-Min;Kim, Sung-Kyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.53 no.1
    • /
    • pp.36-45
    • /
    • 2002
  • Background : In mammals, the activity of antioxidant enzymes is increased in adult lung to adapt to hyperoxia. The increase of these activities is augmented in neonates and is known as an important mechanism of tolerance to high oxygen levels. Peroxiredoxin(Prx) is an abundant and ubiquitous intracellular antioxidant enzyme. Prx I and II are major cytosolic subtypes. The aim of this study was to examine th Prx I and II mRNA and protein expression levels in adult rat lungs and to compare then with those of neonatal rat lungs exposed to hyperoxia. Materials and Methods : Adult Sprague-Dawley rats and neonates that were delivered from timed pregnant Sprague-Dawley rat were randomly exposed to normoxia or hyperoxia. After exposure to high oxygen level for a set time, the bronchoalveolar lavage fluid and lung tissue were obtained. The Prx I and II protein expression levels were measured by western blot analysis using polyclonal rabbit anti-Prx I or anti-Prx II antibodies and the relative expression of the Prx I and Prx II per Actin protein were obtained as an internal standard. The Prx I and II mRNA expression levels were measured by northernblot analysis using Prx I and Prx II-specific cDNA prepared from pCRPrx I and pCRPrx II, and the relative Prx I and Prx II expression levels per Actin mRNA were obtained as an internal standard. Results : Hyperoxia induced some peak increase in the Prx I mRNA levels after 24 hour in adult rats. Interestingly, hyperoxia induced a marked increase of Prx I mRNA 24 hour in neonatal rats. However, hyperoxia did not induce an alteration in the expression of Prx II mRNA in both the adult and neonatal rat lungs. Hyperoxia did not induce an alteration in the expression of the Prx I and Prx II protein in both the adult and neonatal rat lungs. Hyperoxia did not induce an alteration in the amount of Prx I and Prx II protein all the times in the bronchoalveolar fluid of adult rats. Conclusion : Prx I and II is differently regulated by hyperoxia in adult and neonatal rat lung at the transcriptional level. The prominent upregulation of Prx I mRNA in neonates compared to those in adults by hyperoxia may be another mechanism of resistance to high oxygen levels in neonate.

Cloning of Heat Shock Protein 70 and Its Expression Profile under an Increase of Water Temperature in Rhynchocypris kumgangensis (금강모치(Rhynchocypris kumgangensis)에서 heat shock protein 70의 클로닝과 수온상승에 의한 발현 변화 분석)

  • Im, Jisu;Ghil, Sungho
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.232-238
    • /
    • 2013
  • Water temperature is key factor influencing growth and reproduction of fish and its increase give rise to various physiological changes including gene expression. Heat shock protein (Hsp), one of the molecular chaperones, is highly conserved throughout evolution and its expression is induced by various stressors such as temperature, oxidative, physical and chemical stresses. Here, we isolated partial cDNA clones encoding 70-kDa Hsp (Hsp70) and $\beta$-actin using reverse transcriptase-PCR (RT-PCR) from gut of Rhynchocypris kumgangensis, a Korean indigenous species and cold-water fish, and investigated expression profiles of Hsp70 under an increase of water temperature using $\beta$-actin as an internal control for RT-PCR. Cloned Hsp70 cDNA of R. kumgangensis showed homology to Ctenopharyngodon idella (96%), Hypophthalmichthys molitrix (96%), Danio rerio (93%) and Oncorhynchus mykiss (81%) Hsp70. Cloned $\beta$-actin cDNA of R. kumgangensis showed homology to D. rerio (98%), H. molitrix (97%), C. idella (97%) and O. mykiss (90%) $\beta$-actin. Both mRNA of Hsp70 and $\beta$-actin were expressed in gut, brain, and liver in R. kumgangensis. Futhermore, expression of Hsp70, in brain, was highly augmented by an increase of water temperature. These results suggest that Hsp70 mRNA expression level in brain can be used as a biological molecular marker to represent physiological stress against an increase of water temperature.

Molecular Characterization of Rockbream (Oplegnathus fasciatus) Cytoskeletal β-actin Gene and Its 5'-Upstream Regulatory Region

  • Lee, Sang-Yoon;Kim, Ki-Hong;Nam, Yoon-Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.2
    • /
    • pp.90-97
    • /
    • 2009
  • The cytoskeletal $\beta$-actin gene and its 5'-upstream region were isolated and characterized in the rockbream (Oplegnathus fasciatus). Complementary DNA of the rockbream $\beta$-actin represented a 1,125 bp of an open reading frame encoding 375 amino acids, and the rockbream $\beta$-actin cDNA and deduced amino acid sequences were highly homologous to those of other vertebrate orthologs. At the genomic level, the $\beta$-actin gene also exhibited an organization typical of vertebrate cytoskeletal actin genes (2,159 bp composed of five translated exons interrupted by four introns) with a conserved GT/AG exon-intron splicing rule. The putative non-translated exon predicted in the rockbream $\beta$-actin gene was much more homologous with those of teleostean $\beta$-actin genes than those of mammals. The 5'-upstream regulatory region isolated by genome walking displayed conserved and essential elements such as TATA, CArG and CAAT boxes in its proximal part, while several other immune- or stress-related motifs such as those for NF-kappa B, USF, HNF, AP-1 and C/EBP were in the distal part. Semi-quantitative RT-PCR assay results demonstrated that the rockbream $\beta$-actin transcripts were ubiquitously but different-tially expressed across the tissues of juveniles.

Effect of Radiation on mRNA Expression of Ceruloplasmin Gene (방사선 조사에 따른 U-937 세포의 Ceruloplasmin 유전자에서 mRNA 발현 변화)

  • 오연경;임희영;김종수;윤충효;김인규;윤병수
    • Toxicological Research
    • /
    • v.20 no.1
    • /
    • pp.31-36
    • /
    • 2004
  • Against environmental stress, ceruloplasmin which is a plasma protein, are believed to play central roles in antioxidant- or peroxidase-activity in blood stream to remove free radicals, which may be caused by exposing of $\gamma$-irradiation. In human U-937 cells exposed to $\gamma$-irradiation, the levels of mRNA in ceruloplasmin gene were measured on 0, 4, 12, 24 hr after exposing by using comparative RT-PCR (Reverse transcriptase-polymerase chain reaction) which was achieved to compare with house keeping genes such as $\beta$-actin and hprt. After $\gamma$-irradiation of 100 rads or 200 rads, the total quantities of RNA were increased as dose and time dependent manner. On the contrary, the variation of mRNA expression in ceruloplasmin was not found until 4 hr after irradiation. After 12 hr and 24 hr of irradiation, the levels of mRNA in ceruloplasmin were significantly increased as dose and time dependent manner than un-exposed cells.

Effects of dietary polyphenol (-)-epigallocatechin-3-gallate on the differentiation of mouse C2C12 myoblasts (식이성 폴리페놀 (-)-epigallocatechin-3-gallate가 mouse C2C12 myoblast 분화에 미치는 영향)

  • Kim, Hye-Jin;Lee, Won-Jun
    • Journal of Life Science
    • /
    • v.17 no.3 s.83
    • /
    • pp.420-426
    • /
    • 2007
  • In the present investigation, we studied the modulating effects of (-)-epigallocatechin-3-gallate(EGCG) on the differentiation of mouse C2C12 myoblasts. We found that the strong inhibitory effect of EGCG on DNA methyltransferase-mediated DNA methylation induced transdifferentiation of C2C12 myoblasts into smooth muscle cells demonstrated by both morphological changes and immunofluorescent staining. C2C12 myoblasts treated with EGCG for 4 days expressed smooth muscle ${\alpha}-actin$ protein. Real-time PCR data revealed that smooth muscle ${\alpha}-actin$ mRNA was induced by EGCG treated C2C12 myoblasts in a concentration-dependent manner. Smooth muscle ${\alpha}-actin$ mRNA concentration increased 330% and 490% after 2 and 3 days of 50 ${\mu}M$ of EGCG treatment. The expression of another smooth muscle marker, transgelin, mRNA was also increased up to 9-fold by 4 days of EGCG treatment compared with control in a concentration-dependent manner. These results suggested that C2C12 enables to transdifferentiate into smooth muscle when gene expression patterns are changed by the inhibition of DNA methylation induced by EGCG. In conclusion, transdifferentiation of C2C12 myoblasts into smooth muscle is resulted from the modulating effects of EGCG on DNA methylation which subsequently results in changing the expression pattern of several genes playing a critical role in the differentiation of C2C12 myoblasts.

Effects of Histone Deacetylase Inhibitor, Trichostatin A, on the Differentiation of C2C12 Myoblasts and the Expression of Cell Cycle Regulators (히스톤 탈아세틸화 효소 억제제 trichostatin A가 C2C12 myoblast 세포 분화와 세포주기 조절인자의 발현에 미치는 영향)

  • Lee, Won-Jun
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.976-982
    • /
    • 2007
  • The purpose of this study was to determine the modulating effects of histone deacetylase inhibitor, trichostatin A, on the differentiation of mouse C2C12 myoblasts. We demonstrated that trichostatin A induced morphological changes of C2C12 myoblasts into smooth muscles and significantly increased the gene expression of smooth muscle markers including smooth muscle ${\alpha}-actin$ and transgelin. These results were due to the change in the expression level of cell cycle regulators in trichostatin A-treated C2C12 cells. Real-time PCR data revealed that cyclin dependent kinase inhibitor, p21, mRNA expression was significantly increased in trichostatin A-treated C2C12 cells. However, trichostaDn A rapidly decreased cyclin Dl mRNA expression necessary for cell cycle progression in 24hr after treatment. In conclusion, the strong inhibitory effects of trichostatin A on histone deacetylation induced transdifferentiation of C2C12 myoblasts into smooth muscle cells and these results are partly due to the changes in the expression of cell cycle regulators such as p21 and cyclin D1.

A Comparative Study of Gene Expression Patterns of Periodontal Ligament Cells and Gingival Fibroblasts using the cDNA Microarray (cDNA Microarray를 이용한 치주인대세포와 치은섬유아세포의 유전자 발현에 대한 연구)

  • Jeon, Chai-Young;Park, Jin-Woo;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.1
    • /
    • pp.205-221
    • /
    • 2004
  • Periodontal ligament(PDL) cells have been known as playing an important roles in periodontal regeneration and gingival fibroblasts are also important to periodontal regeneration by forming connective tissue attachment. There were rare studies about the gene expression patterns of PDL cells and gingival fibroblasts, therefore in this study, we tried cDNA microarray-based gene expression monitoring to explain the functional differences of PDL cells and gingival fibroblasts in vivo and to confirm the characteristics of PDL cells. Total RNA were extracted from PDL cells and gingival fibroblasts of same person and same passages, and mRNA were isolated from the total RNA using Oligotex mRNA midi kit(Qiagen) and then fluorescent cDNA probe were prepared. And microarray hybridization were performed. The gene expression patterns of PDL cells and gingival fibroblasts were quite different. About 400 genes were expressed more highly in the PDL cells than gingival fibroblasts and about 300 genes were more highly expressed in the gingival fibroblasts than PDL cells. Compared growth factor- and growth factor receptor-related gene expression patterns of PDL cells with gingival fibroblasts, IGF-2, IGF-2 associated protein, nerve growth factor, placental bone morphogenic protein, neuron-specific growth- associated protein, FGF receptor, EGF receptor-related gene and PDGF receptor were more highly expressed in the PDL cells than gingival fibroblasts. The results of collagen gene expression patterns showed that collagen type I, type III, type VI and type VII were more highly expressed in the PDL cells than gingival fibroblasts, and in the gingival fibroblasts collagen type V, XII were more highly expressed than PDL cells. The results of osteoblast-related gene expression patterns showed that osteoblast specific cysteine-rich protein were more highly expressed in the PDL cells than gingival fibroblasts. The results of cytoskeletal proteins gene expression patterns showed that a-smooth muscle actin, actin binding protein, smooth muscle myosin heavy chain homolog and myosin light chain were more highly expressed in the PDL cells than gingival fibrobalsts, and ${\beta}-actin$, actin-capping protein(${\beta}$ subunit), actin- related protein Arp3(ARP) and myosin class I(myh-1c) were more highly expressed in the gingival fibroblasts than PDL cells. Osteoprotegerin/osteoclastogenesis inhibitory factor(OPG/OCIF) was more highly expressed in the PDL cells than gingival fibroblasts. According to the results of this study, PDL cells and gingival fibroblasts were quite different gene expression patterns though they are the fibroblast which have similar shape. Therefore PDL cells & gingival fibroblasts are heterogeneous populations which represent distinct characteristics. If more studies about genes that were differently expressed in each PDL cells & gingival fibroblasts would be performed in the future, it would be expected that the characteristics of PDL cells would be more clear.