Tuberculosis and Respiratory Diseases A 2 FE7128 Vol 53, No. 1, Jul, 2002
g AN

TA )] a2 AA wiA gL As wAl] 9lo]A
Peroxiredoxin [# 119] v+

SELUTIEEE LB

Ol&E, 2183, otEnl, A8+

Expression of Peroxiredoxin I and II in Neonatal and
Adult Rat Lung Exposed to Hyperoxia

Chang Youl Lee, M.D., Hyung Jung Kim, M.D.,
Chul Min Ahn, M.D., Sung Kyu Kim, M.D.

Department of Internal Medicine, Yonsei University College of Medicine, Seoul. Korea

Background : In mammals, the activity of antioxidant enzymes is increased i adult lung to adapt to
hyperoxia. The increase of these activities is augmented in neonates and is known as an important
mechanism of tolerance to high oxygen levels. Peroxiredoxin(Prx) is an abundant and ubiquitous
intracellular antioxidant enzyme. Prx I and II are major cytosolic subtypes. The aim of this study was to
examine the Prx I and I mRNA and protein expression levels in adult rat lungs and to compare then with
those of neonatal rat lungs exposed to hyperoxia.

Methods : Adult Sprague-Dawley rats and neonates that were delivered from timed-pregnant
Sprague-Dawley rat were randomly exposed to normoxia or hyperoxia. After exposure fo high oxygen
level for a set time, the bronchoalveolar lavage fluid and lung tissue were obtained. The Prx I and II
protein expression levels were measured by western blot analysis using polyclonal rabbit anti-Prx I or
anti-Prx I antibodies and the relative expression of the Prx I and Prx I per Actin protein were
obtained as an internal standard. The Prx I and I mRNA expression levels were measured by
northemnblot analysis using Prx 1 and Prx I-specific ¢cDNA prepared from pCRPrx I and pCRPrx II,
and the relative Prx I and Prx I expression levels per Actin mRNA were obtained as an internal standard.
Results : Hyperoxia induced some peak increase in the Prx I mRNA levels after 24 hour in adult rats.
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Interestingly, hyperoxia induced a marked increase of Prx I mRNA at 24 hour in neonatal rats. However,
hyperoxia did not induce an alteration in the expression of Prx I mRNA in both the adult and neonatal
rat lungs. Hyperoxia did not induce an alteration in the expression of the Prx I and Prx I protein in both
the adult and neonatal rat lungs. Hyperoxia did not induce an alteration in the amount of Prx I and Prx T
protein all the times in the bronchoalveolar fluid of adult rats.

Conclusion : Prx [ and I is differently regulated by hyperoxia in adult and neonatal rat lung at the
transcriptional level. The prominent upregulation of Prx I mRNA in neonates compared to those in

adults by hyperoxia may be another mechanism of resistance to high oxygen levels in neonate.

(Tuberculosis and Respiratory Diseases 2002, 53:36-45)
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Fig. 1. Prx I/Actin mRNA in adult and neonatal rat lung exposed to normoxia and hyperoxia.

Prx I mRNA and Actin mRNA in 5 separate adult and neonatal rat lung exposed to normoxia
and hyperoxia were measured by Northernblot analysis, and the data are given as Prx FActin

mRNA ratio(*+<0.05, *<0.01).
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Fig. 2. Prx I/Actin mRNA in adult and neonatal rat lung exposed to normoxia and hyperoxia.
Prx 0 mBNA and Actin mRNA in 5 separate adult and neonatal rat lung exposed to normoxia
and hyperoxia were measured by Northermnblot analysis, and the data are given as Prx I/Actin

mRNA ratio,
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Fig. 3. Prx I/Actin protein in adult and neonatal rat lung exposed to normoxia and hyperoxia.
Prx I protein and Actin protein 5 separate adult and neonatal rat lung exposed to normoxia and
hyperoxia were measured by Westernblot analysis, and the data are given as Prx I/Actin protein

ratio.
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Fig. 4. Prx II/Actin protein in adult and neonatal rat lung exposed to normoxia and hyperoxia,
Prx | protein and Actin protein 5 separate adult and neonatal rat lung exposed to normoxia and
hyperoxia were measured by Westernblot analysis, and the data are given as Prx II/Actin

protein ratio.
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Fig. 5. Prx 1 or II/Actin protein in bronchoalveolar lavage fluid of adult ras exposed to normoxia and
hyperoxia.
Prx 1T or I protein and Actin protein in 5 separate adult rat exposed to normoxia and
hyperoxia were measured by Westernblot analysis, and the data are given as Prx I or O
/Actin protein ratio.
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