• Title/Summary/Keyword: Actin cytoskeleton

Search Result 103, Processing Time 0.022 seconds

Role of cytoskeleton in Host Cell Invasion by Intracellular Protozoa Toxoplasma gondii

  • Lee, Sook-Hwan;Lee, Boo-Young;Min, Duk-Young;Kim, Jung-Mogg;Ahn, Myoung-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.628-634
    • /
    • 2002
  • A microfilament-based motility in Toxoplasma gondii (T. gondii) Is involved in host cell invasion, yet the exact mechanism has not yet been determined. Accordingly, the current study examined the localization of actin and tubulin in T gondii using immunofluorescent (IF) and immunogold staining for electron microscopy. Indirect immunofluorescence (IF) staining using anti-actin and anti-tubulin monoclonal antibodies (mAbs) revealed localization of fluorescence on the entire surface of the tachyzoites. The actin in T. gondii was observed by immunogold staining, and the gold particles were seen on the surface, especially at the anterior end and in the cytoplasm of the parasite. However, there were no gold particles in the nucleus, rhoptries, and dense granules. The tubulin in T gondii was located on the surface and in the cytoplasm of the tachyzoites in the extracellular parasite, compared with anterior part of tachyzoites in the intracellular parasite. The antigens of T gondii recognized by anti-actin mAb were 107 kDa, 50 kDa, 48 kDa, and 40 kDa proteins, while those recognized by anti-tubulin mAb were 56 kDa, 52 kDa, and 34 kDa proteins. Tachyzoites of T gondii pretreated with the actin inhibitor, cytochalasin D (20 $\mu\textrm{g}$/ml), and tubulin inhibitor, colchicine (2$\times$10$\^$-6/ M), for 30 min at 37$\^{C}$ were used to infect the isolated mouse macrophages (tachyzo ites:macrophage=2:1). Pretreatment with the inhibitors resulted in lower multiplication of tachyzoites within the macrophages than in the untreated group 18 h post infection (p<0.05). Therefore, the present results suggest that actin and tubulin appear to be involved in the invasion of and multiplication in host cells.

Analysis of the effect of trichloroacetic acid and epidermal growth factor release on cytoskeleton gene expression using the nano-controlled releasing system (나노방출제어시스템을 이용한 trichloroacetic acid와 epidermal growth factor 방출이 세포골격형성 유전자 발현에 미치는 영향 분석)

  • Park, Mi Jeong;Leesungbok, Richard;Lee, Suk Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.4
    • /
    • pp.290-299
    • /
    • 2020
  • Purpose: Here, we verified that the actin cytoskeletal gene expression of human gingival fibroblasts was altered by the administration of trichloroacetic acid (TCA) and epidermal growth factor (EGF) using the nano-controlled releasing system. Materials and methods: The control and experimental groups were divided into 3 groups: the group with the TCA-only nano-controlled releasing system (EXP1), the group with the TCA- and EGF nano-controlled releasing system (EXP2), and the control group (CON) with 48-h incubation. Expression of 26 genes involved in the regulation of actin cytoskeleton were analyzed by real-time PCR followed by the determination of correlations and influential factors using the Pearson correlation analysis and multiple regression analysis. Results: Among 23 genes upregulated in EXP1 and EXP2, expression of 14 genes were significantly increased in EXP2 compared to EXP1. On the other hand, LPAR1 was downregulated only in EXP1, GNA13 was upregulated only in EXP2, and F2R was downregulated only in EXP2. Three Rac1-related genes and CDC42 were identified as the influential factors of the actin gene upregulation. Conclusion: The actin cytoskeleton genes in human gingival fibroblast were upregulated by the administration of TCA and EGF using HGC-based nano-controlled releasing system.

Induction of Oxidative Stress and Cytoskeleton Damage by Cadmium in WB-F344 Rat Liver Epithelial Cells (랫드간장상피세포에서 카드뮴에 의한 산화적 스트레스 및 Cytoskeleton 손상 유발에 관한 연구)

  • 정상희;조명행;조준형
    • Toxicological Research
    • /
    • v.14 no.4
    • /
    • pp.577-585
    • /
    • 1998
  • Cadmium is an important industrial and environmental pollutant and has adverse effects on cell growth and metabolism, although the mechanisms of its cellular toxicity are still unclear. This study was performed to elucidate the cytotoxic mechanism of cadmium in the viewpoint of oxidative stress and cytoskeleton alterations in WB-F344 rat liver epithelial cells. 200 $\mu\textrm{M}$ $CdCl_2$ caused a severe disassembling of microtubule and micro filament and an apparent cell retraction under an observation with fluorescence micoscope. (equation omitted)-tubulin and F-actin protein were highly thiolated at 20 min and then disappeared from 1 hour after the treatment of 200 $\mu$M CdCl$_2$in the immunoblot analysis. Intracellular GSH was decreased from 1hr to 24 hrs by 66.6 or 200 $\mu\textrm{M}$ of $CdCl_2$. Intracellular protein thiol was also decreased by 22.2, 66.6 and 200 $\mu\textrm{M}$ of $CdCl_2$ at 1 hour after its treatment. The product of lipid peroxidation (malondialdehyde) was increased from 4 hrs by 66.6 and 200$\mu\textrm{M}$ of $CdCl_2$. These data indicate that cadmium induces oxidative stress involving disassembling of microtubule and micro filament, thiolation of (equation omitted)-tubulin and actin protein, depletion of GSH and protein thiol, and increase of lipid peroxidation.

  • PDF

Hippo-YAP/TAZ signaling in angiogenesis

  • Park, Jeong Ae;Kwon, Young-Guen
    • BMB Reports
    • /
    • v.51 no.3
    • /
    • pp.157-162
    • /
    • 2018
  • Angiogenesis is a complex, multistep process involving dynamic changes in endothelial cell (EC) shapes and behaviors, especially in specialized cell types such as tip cells (with active filopodial extensions), stalk cells (with less motility) and phalanx cells (with stable junction connections). The Hippo-Yes-associated protein (YAP)/ transcription activator with PDZ binding motif (TAZ) signaling plays a critical role in development, regeneration and organ size by regulating cell-cell contact and actin cytoskeleton dynamics. Recently, with the finding that YAP is expressed in the front edge of the developing retinal vessels, Hippo-YAP/TAZ signaling has emerged as a new pathway for blood vessel development. Intriguingly, the LATS1/2-mediated angiomotin (AMOT) family and YAP/TAZ activities contribute to EC shapes and behaviors by spatiotemporally modulating actin cytoskeleton dynamics and EC junction stability. Herein, we summarize the recent understanding of the role of Hippo-YAP/TAZ signaling in the processes of EC sprouting and junction maturation in angiogenesis.

The Role of Cytoskeletal Elements in Shaping Bacterial Cells

  • Cho, Hongbaek
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.307-316
    • /
    • 2015
  • Beginning from the recognition of FtsZ as a bacterial tubulin homolog in the early 1990s, many bacterial cytoskeletal elements have been identified, including homologs to the major eukaryotic cytoskeletal elements (tubulin, actin, and intermediate filament) and the elements unique in prokaryotes (ParA/MinD family and bactofilins). The discovery and functional characterization of the bacterial cytoskeleton have revolutionized our understanding of bacterial cells, revealing their elaborate and dynamic subcellular organization. As in eukaryotic systems, the bacterial cytoskeleton participates in cell division, cell morphogenesis, DNA segregation, and other important cellular processes. However, in accordance with the vast difference between bacterial and eukaryotic cells, many bacterial cytoskeletal proteins play distinct roles from their eukaryotic counterparts; for example, control of cell wall synthesis for cell division and morphogenesis. This review is aimed at providing an overview of the bacterial cytoskeleton, and discussing the roles and assembly dynamics of bacterial cytoskeletal proteins in more detail in relation to their most widely conserved functions, DNA segregation and coordination of cell wall synthesis.

Actin Engine in Immunological Synapse

  • Piragyte, Indre;Jun, Chang-Duk
    • IMMUNE NETWORK
    • /
    • v.12 no.3
    • /
    • pp.71-83
    • /
    • 2012
  • T cell activation and function require physical contact with antigen presenting cells at a specialized junctional structure known as the immunological synapse. Once formed, the immunological synapse leads to sustained T cell receptor-mediated signalling and stabilized adhesion. High resolution microscopy indeed had a great impact in understanding the function and dynamic structure of immunological synapse. Trends of recent research are now moving towards understanding the mechanical part of immune system, expanding our knowledge in mechanosensitivity, force generation, and biophysics of cell-cell interaction. Actin cytoskeleton plays inevitable role in adaptive immune system, allowing it to bear dynamic and precise characteristics at the same time. The regulation of mechanical engine seems very complicated and overlapping, but it enables cells to be very sensitive to external signals such as surface rigidity. In this review, we focus on actin regulators and how immune cells regulate dynamic actin rearrangement process to drive the formation of immunological synapse.

Inhibition of Chondrogenesis by Cytochalasin D in High Density Micromass Culture of Chick Mesenchymal Cells: Its Effects on Expression of $\alpha$-Smooth Muscle Actin and P-cadherin

  • Yoo, Jeong-Ah;Park, Su-Jung;Kang, Shin-Sung;Park, Tae-Kyu
    • Animal cells and systems
    • /
    • v.5 no.3
    • /
    • pp.205-209
    • /
    • 2001
  • Mesenchymal cells from the leg buds of stage 24-chick embryos differentiated into chondrocytes when plated at high density. Treatment of high density micromass culture of chick mesenchymal cells with cytochalasin D(CD, 2 $\mu$M for 24 h) resulted in inhibition of chondrogenesis. CD treatment was found to affect the expression of the contractile protein $\alpha$-smooth muscle actin ($\alpha$-SM actin). In control cultures, $\alpha$-SM actin uniformly expressed from culture day 2, but the CD-treated cells induced expression of $\alpha$-SM actin from the first day of culture followed by a continuous increase. Expression of pan-cadherin (P-cadherin) decreased as chondrogenesis proceeded in the control culture, whereas the CD-treated cells showed sustained expression. These results propose a close connection of chondrogenic differentiation with expression of $\alpha$-SM actin and P-cadherin.

  • PDF

Saturated fatty acid-inducible miR-103-3p impairs the myogenic differentiation of progenitor cells by enhancing cell proliferation through Twinfilin-1/F-actin/YAP1 axis

  • Mai Thi Nguyen;Wan Lee
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.27 no.3
    • /
    • pp.277-287
    • /
    • 2023
  • Actin dynamics play an essential role in myogenesis through multiple mechanisms, such as mechanotransduction, cell proliferation, and myogenic differentiation. Twinfilin-1 (TWF1), an actin-depolymerizing protein, is known to be required for the myogenic differentiation of progenitor cells. However, the mechanisms by which they epigenetically regulate TWF1 by microRNAs under muscle wasting conditions related to obesity are almost unknown. Here, we investigated the role of miR-103-3p in TWF1 expression, actin filament modulation, proliferation, and myogenic differentiation of progenitor cells. Palmitic acid, the most abundant saturated fatty acid (SFA) in the diet, reduced TWF1 expression and impeded myogenic differentiation of C2C12 myoblasts, while elevating miR-103-3p levels in myoblasts. Interestingly, miR-103-3p inhibited TWF1 expression by directly targeting its 3'UTR. Furthermore, ectopic expression of miR-103-3p reduced the expression of myogenic factors, i.e., MyoD and MyoG, and subsequently impaired myoblast differentiation. We demonstrated that miR-103-3p induction increased filamentous actin (F-actin) and facilitated the nuclear translocation of Yes-associated protein 1 (YAP1), thereby stimulating cell cycle progression and cell proliferation. Hence, this study suggests that epigenetic suppression of TWF1 by SFA-inducible miR-103-3p impairs myogenesis by enhancing the cell proliferation triggered by F-actin/YAP1.

Regulation of SPIN90 by Cell Adhesion and ERK Activation

  • Kim Sung Hyun;Kim Dae Joong;Song Woo Keun
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.141-146
    • /
    • 2004
  • SPIN90 was identified to farm molecular complex with $\betaPIX$, WASP and Nck. This complex shows that SPIN90 interacts with Nck in a manner dependent upon cell adhesion to extracellular matrix, but $SPIN90{\cdot}{\beta}PIX{\cdot}WASP$ complex was stable even in suspended cells. This suggests that SPIN90 serves as an adaptor molecule to recruit other proteins to Nck at focal adhesions. SPIN90 was phosphorylated by ERK1, which was, itself, activated by cell adhesion and platelet-derived growth factor. Such phosphorylation of SPIN90 likely promotes the interaction of the $SPIN90{\cdot}{\beta}PIX{\cdot}WASP$ complex and Nck. It thus appears that the interaction of the $SPIN90{\cdot}{\beta}PIX{\cdot}WASP$ complex with Nck is crucial for stable cell adhesion and can be dynamically modulated by SPIN90 phosphorylation that is dependent on cell adhesion and ERX activation. SPIN90 directly binds syndapin I, syndapin isoform II-1 and II-s via its PRD region in vitro, in vivo and also associates with endocytosis core components such as clathrin and dynamin. In neuron and fibroblast, SPIN90 colocalizes with syndapins as puntate form, consistent with a role for SPIN90 in clathrin-mediated endocytosis pathway. Overexpression of SPIN90 N-term inhibits receptor-mediated endocytosis. Interestingly, SPIN90 PRD, binding interface of syndapin, significantly blocks internalization of transferrin, demonstrating SPIN90 involvement in endocytosis in vivo by interacting syndapin. Depletion of endogenous SPIN90 by introducing $\alpha-SPIN90$ also blocks receptor-mediated endocytosis. Actin polymerization could generate farce facilitating the pinch-out event in endocytosis, detach newly formed endocytic vesicle from the plasma membrane or push out them via the cytosol on actin tails. Here we found that SPIN90 localizes to high actin turn over cortical area, actin-membrane interface and membrane ruffle in PDGF treated cells. Overexpression of SPIN90 has an effect on cortical actin rearrangement as filopodia induction and it is mediated by the Arp2/3 complex at cell periphery. Consistent with a role in actin organization, CFP-SPIN90 present in actin comet tail generated by PIP5 $kinase\gamma$ overexpression. Therefore this study suggests that SPIN90 is functional linker between endocytosis and actin cytoskeleton.

  • PDF