• Title/Summary/Keyword: Acoustic power measurement

Search Result 104, Processing Time 0.026 seconds

A Study on the Evaluation of Acoustic Power of Korean Railway for Noise Prediction and its Application (한국철도 소음 예측을 위한 음향파워 산출 및 활용에 관한 연구)

  • 조준호;이덕희;최성훈;김재철
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.2
    • /
    • pp.93-98
    • /
    • 2004
  • For the reduction and efficient management of railway noise, first of all prediction of railway noise is necessarily requisted. At home and abroad many studies for prediction of railway nearby noise have been accomplished. But it is impossible to predict exactly for the Korean Railway, because the acoustic powers for each rolling stock used in Korea have not been built yet. So in this study, acoustic powers for each Korean rolling stock such as Samaeul, Mugungwha were builded acceding to the speed and rail support systems. Predicted results using the acoustic powers suggested in this study are compared with measured results and it is known that these acoustic powers can be used for precise prediction of railway noise.

The Acoustic Output Estimation for Therapeutic Ultrasound Equipment using Electro-Acoustic Radiation Conductance (전기-음향 방사컨덕턴스를 이용한 치료용 초음파 자극기의 음향출력 예측)

  • Yun, Yong-Hyeon;Jho, Moon-Jae;Kim, Yong-Tae;Lee, Myoung-Ho
    • Journal of Biomedical Engineering Research
    • /
    • v.32 no.3
    • /
    • pp.264-269
    • /
    • 2011
  • To increase therapeutic efficiency and biological safety, it is important to precision control of acoustic output for therapeutic ultrasound equipment. In this paper, the electro-acoustic radiation conductance, one of electroacoustic characteristics of therapeutic ultrasound equipment, was measured by the radiation force balance method according to IEC 61161 standards and the acoustic output was estimated using the electro-acoustic radiation conductance. The estimation of acoustic output was conducted to continuous wave mode and pulse wave mode of duty cycle between 20% and 80%. The differences between prediction values and measurement results are within 5% of measurement uncertainty, which is a reasonably good agreement. The results show that acoustic output controlled by electro-acoustic radiation conductance was found to be an effective method.

Partial Discharge Monitoring Technology based on Distributed Acoustic Sensing (분포형 광음향센싱 기반 부분방전 모니터링 기술 연구)

  • Huioon, Kim;Joo-young, Lee;Hyoyoung, Jung;Young Ho, Kim;Myoung Jin, Kim
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.441-447
    • /
    • 2022
  • This study describes a novel method for detecting and measuring partial discharge (PD) on an electrical facility such as an insulated power cable or switchgear using fiber optic sensing technology, and a distributed acoustic sensing (DAS) system. This method has distinct advantages over traditional PD sensing techniques based on an electrical method, including immunity to electromagnetic interference (EMI), long range detection, simultaneous detection for multiple points, and exact location. In this study, we present a DAS system for PD detection with performance evaluation and experimental results in a simulated environment. The results show that the system can be applied to PD detection.

Acoustic Noise of Brushless DC Motors Induced by Electromagnetic Torque Ripple

  • Xia, Kun;Li, Zhengrong;Lu, Jing;Dong, Bin;Bi, Chao
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.963-971
    • /
    • 2017
  • Torque ripple is one of the major sources inducing vibration and noise in brushless DC motors. This is especially true in applications such as the spindle motors used in hard disk drives. However, the relationship between torque ripple and acoustic noise/vibration is quite complicated. This paper presents a way to investigate this relationship with acoustic noise measurement and analysis. Results obtained with three different drive modes are used in the analysis. The results show that the acoustic noise analysis is very helpful in designing a high-performance drive strategy for BLDC motors.

The decision of position of a partial discharge in power transformer by measurement of ultra sonic signal (초음파 신호측정에 의한 변압기내의 부분방전위치측정)

  • 문영재
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1992.06a
    • /
    • pp.87-90
    • /
    • 1992
  • Detecting acoustic emission (AE) provides an appropriate method to diagonize on-line transformers, since acoustic signal is not influenced by strong electric field. Then AE versus AE signal processing method is investigated. But this processing is difficult that decision of starting point of AE wave with acoustic noise. This problem is sloved by correlation which calculate time interval between two signals eactly. This paper presents a technique locating the eact position of the partial discharge (PD) in a power transformer by the correlation of the AE signals from two ultrasonic sensors. And PD position is displayed on monitor. Laboratory tests confirmed that the proposed method can be used for locating the PD in power transformer.

  • PDF

Calculation of the ultrasonic radiation force acting on a rigid circular cone and the study on the metrology for the acoustic power measurement (강체원뿔표적에 대한 초음파 방사힘 계산과 음향파워측정모델에 관한 연구)

  • Kyungmin Baik;Jooho Lee;Elmina B. C. Fritzie;Yong Tae Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.3
    • /
    • pp.335-343
    • /
    • 2024
  • This paper came up with the theoretical modelling of the metrology for the acoustic power using ultrasonic radiation force and showed some theoretical results. In order to do this, a scattering model for a rigid circular cone based upon the Kirchhoff approximation was made, which was followed by the calculation of acoustic power, and then, was converted to the radiation force. From these works, it provided the accuracy and limitation of the conventional method using a circular cone, and the expanded metrology modelling that can be applied to a circular cone with arbitrary apex angle. Using these, this study provided the dependence of the metrology for the acoustic power using ultrasonic radiation force on the frequency and the size of the target. As a result, the correction was yielded in the value of the acoustic power calculated by the suggested International Electrotechnical Commission (IEC) method, which needs to be added when the frequency and the size of the target was considered.

A Development of Acoustic Release System in the Seafloor (심해저용 원격 착탈 제어 시스템의 개발)

  • Kim, Young-Jin;Huh, Kyung-Moo;Jeong, Han-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.9
    • /
    • pp.774-780
    • /
    • 2005
  • For the accurate inspection of the resources and space in the ocean, the method of locating the measurement equipments in the seafloor and retrieving these equipments later after a certain period of time. is generally used. In this method, the reliability of retrieving measurement equipments is very important. In our proposed remotely-controlled acoustic release system, an underwater ultrasonic wave recognition algorithm by which we can recognize the sound signal without the influence of disturbances due to underwater environment changes is developed, and a battery is used for the reduction of electric power consumption. we show the effectiveness of our proposed system through experimental results.

Localization of Acoustic Sources on Wind Turbine by Using Beam-forming Techniques (빔-형성 기법을 이용한 풍력 터빈 음원의 국부화)

  • Lee, Gwang-Se;Shin, Su-Hyun;Cheong, Cheol-Ung;Jung, Sung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.809-815
    • /
    • 2009
  • The previous work(Cheong et al., 2006) where the characteristics of acoustic emissions of wind turbines has been investigated according to the methods of power regulation, has showed that the acoustic power of wind turbine using the stall control for power regulation is more correlated with the wind speed than that using the pitch control. In this paper, basically extending this work, the noise generation characteristics of large modern upwind wind turbines are experimentally indentified according to the power regulation methods. To investigate the noise generation mechanisms, the distribution of noise sources in the rotor plane is measured by using the beam-forming measurement system(B&K 7768, 7752, WA0890) consisting of 48 microphones. The array results for the 660 kW wind turbine show that all noise is produced during the downward movement of the blades. This result show good agreement with the theoretical result using the empirical formula with the parameters: the convective amplification; trailing edge noise directivity; flow-speed dependence. This agreement implies that the trailing edge noise is dominant over the whole frequency range of the noise from the 660 kW wind turbine using the pitch control for power regulation.

Localization of Acoustic Sources on Wind Turbine by Using Beam-forming Techniques (빔-형성 기법을 이용한 풍력 터빈 음원의 국부화)

  • Lee, Gwang-Se;Shin, Su-Hyun;Cheong, Cheol-Ung;Jung, Sung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.63-67
    • /
    • 2009
  • The previous work (Cheong et al., 2006) where the characteristics of acoustic emissions of wind turbines has been investigated according to the methods of power regulation, has showed that the acoustic power of wind turbine using the stall control for power regulation is more correlated with the wind speed than that using the pitch control. In this paper, basically extending this work, the noise generation characteristics of large modern upwind wind turbines are experimentally indentified according to the power regulation methods. To investigate the noise generation mechanisms, the distribution of noise sources in the rotor plane is measured by using the Beam-forming measurement system (B&K 7768, 7752, WA0890) consisting of 48 microphones. The array results for the 660 kW wind turbine show that all noise is produced during the downward movement of the blades. This result show good agreement with the theoretical result using the empirical formula with the parameters: the convective amplification; trailing edge noise directivity; flow-speed dependence. This agreement implies that the trailing edge noise is dominant over the whole frequency range of the noise from the 660 kW wind turbine using the pitch control for power regulation.

  • PDF

Numerical and Experimental Investigation on Structure-acoustic Coupling Effect in a Reverberant Water Tank (잔향수조의 구조-음향 연성효과에 관한 수치 및 실험적 고찰)

  • Park, Yong;Kim, Kookhyun;Cho, Dae-Seung;Lee, Jong-Ju
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.94-101
    • /
    • 2019
  • Underwater acoustic power should be measured in a free field, but it is not easy to implement. In practice, the measurement could be performed in a reverberant field such as a water-filled steel tank and concrete tank. In this case, the structure and the acoustic field are strongly or weakly coupled according to material properties of the steel and water. So, characteristics of the water tank must be investigated in order to get the accurate underwater acoustic power. In detail, modal frequencies, mode shapes of the structure and frequency response functions of the acoustic field could represent the characteristics of the reverberant water tank. In this paper, the structure-acoustic coupling has been investigated on a reverberant water tank numerically and experimentally. The finite element analysis has been carried out to estimate the structural and acoustical modal parameters under the dry and water-filled conditions, respectively. In order to investigate the structure-acoustic coupling effect, the numerical analysis has been performed according to the structure stiffness change of the water tank. The acoustic frequency response functions were compared with the numerical analysis and acoustic exciting test. From the results, the structural modal frequencies of the water-filled condition have been decreased compared to those of the dry condition in the low frequency range. The acoustic frequency response functions under the coupled boundary conditions showed different patterns from those under the ideal boundary conditions such as the pressure release and rigid boundary condition, respectively.