• Title/Summary/Keyword: Acoustic model

Search Result 1,266, Processing Time 0.029 seconds

Estimation of source signal and channel response using ray-based blind deconvolution technique for Doppler-shifted underwater channel (음선 기반 블라인드 디컨볼루션 기법을 이용한 수중 도플러 편이 채널에서의 송신 신호 및 채널 응답 추정)

  • Byun, Gi Hoon;Oh, Se Hyun;Byun, Sung-Hoon;Kim, J.S.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.5
    • /
    • pp.331-339
    • /
    • 2016
  • This paper suggests an estimation method of the source signal and the channel impulse response (CIR) using ray-based blind deconvolution (RBD) in the underwater acoustic channel environment where Doppler effect exists by the relative motion between source and receiver. It is difficult to estimate the CIR on Doppler effect by the matched filter with a highly Doppler-sensitive waveform such as the m-sequence signal because Doppler shift can severely degrade the correlation between the received signal corrupted by Doppler effect and the original source signal. In this study, the Doppler-shifted source-signal's phase is estimated using the RBD, and the received signal is compensated by it to obtain the Doppler-corrected CIR. It is verified that using the matched filter with the received signal from the experimental data fails to estimate the CIR while the obtained CIR by the suggested method has the similarity to the propagation path of the ray model. Also, the results show that the reconstructed source signal using the RBD has the better Doppler shift compensation than the Doppler-shifted source signal derived from scattering function.

An Effective Application of AE Technique for the Detection of Defects in Steel Girder Bridges (강판형교에서의 효율적인 결함검출을 위한 AE기법의 적용)

  • Kim, Sang Hyo;Yoon, Dong Jin;Lee, Sang Ho;Kim, Hyung Suk;Park, Young Jin
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.3 s.32
    • /
    • pp.287-300
    • /
    • 1997
  • In this study, an effective application method of AE technique for the detection of fatigue crack in multi-girder steel bridges has been proposed. The applicability has been examined through the laboratory works with bridge model. The proposed analytical method which evaluates the remaining fatigue lives of structural members may improve the rational determination of the priority of inspection for structural members assuming to have fatigue cracks. Laboratory tests for the application of AE technique to steel girder bridges show that the frequency bands of traffic noise are in the range between 10 show that the frequency bands of traffic noise are in the range between 100~200 kHz and the AE signal raised from fatigue cracks is concentrated around 400~500 kHz. Therefore. R30 sensor is proved to be the most suitable for the detection of cracks in steel girder bridges. A linear proportionality between the crack propagation and the frequency of AE signals has been obtained. In addition, an economic and effective source location method for steel girder bridges was studied through experiments.

  • PDF

Surficial Sediment Classification using Backscattered Amplitude Imagery of Multibeam Echo Sounder(300 kHz) (다중빔 음향 탐사시스템(300 kHz)의 후방산란 자료를 이용한 해저면 퇴적상 분류에 관한 연구)

  • Park, Yo-Sup;Lee, Sin-Je;Seo, Won-Jin;Gong, Gee-Soo;Han, Hyuk-Soo;Park, Soo-Chul
    • Economic and Environmental Geology
    • /
    • v.41 no.6
    • /
    • pp.747-761
    • /
    • 2008
  • In order to experiment the acoustic remote classification of seabed sediment, we achieved ground-truth data(i.e. video and grab samples, etc.) and developed post-processing for automatic classification procedure on the basis of 300 kHz MultiBeam Echo Sounder(MBES) backscattering data, which was acquired using KONGBERG Simrad EM3000 at Sock-Cho Port, East Sea of South Korea. Sonar signal and its classification performance were identified with geo-referenced video imagery with the aid of GIS (Geographic Information System). The depth range of research site was from 5 m to 22.7 m, and the backscattering amplitude showed from -36dB to -15dB. The mean grain sizes of sediment from equi-distanced sampling site(50 m interval) varied from 2.86$(\phi)$ to 0.88(\phi). To acquire the main feature for the seabed classification from backscattering amplitude of MBES, we evaluated the correlation factors between the backscattering amplitude and properties of sediment samples. The performance of seabed remote classification proposed was evaluated with comparing the correlation of human expert segmentation to automatic algorithm results. The cross-model perception error ratio on automatic classification algorithm shows 8.95% at rocky bottoms, and 2.06% at the area representing low mean grain size.

Measurement of transmitted vibration to stapes and tympanic membrane by DFMT's vibration in implantable middle ear hearing devices (중이 이식형 보청기에서 DFMT의 진동에 의한 등골 및 고막 방향으로 전달되는 진동력 측정)

  • Lee, Myoung-Won;Seong, Ki-Woong;Lim, Hyung-Gyu;Kim, Min-Woo;Jung, Eui-Sung;Lee, Jang-Woo;Kim, Dong-Wook;Lee, Jyung-Hyun;Lee, Sang-Heun;Lee, Kyu-Yup;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.286-293
    • /
    • 2009
  • The implantable middle ear hearing devices(IMEHDs) have been developed to overcome the conventional hearing aid's problem(ringing effect caused by the acoustic feedback, cosmetic problem, etc.). In the IMEHDs, the vibrating transducer is a key component because its vibration enables to hear for hearing impaired people. The vibrating transducer is implanted on ossicular chain by surgical operation. The coupling status between implanted transducer and ossicular chain has an effect on delivering vibrating force from transducer to stapes. Noninvasive method is required to investigate the output characteristics of IMEHDs after implementation. Recently, emitted sound pressure measuring method of tympanic membrane is proposed to investigate the output characteristics of IMEHDs. However, the relationship between displacement of stapes and sound pressure by tympanic membrane was not cleared. In this paper, displacement of stapes and sound pressure by tympanic membrane were measured using the differential floating mass transducer(DFMT) that implanted on the ossicular chain of the human temporal bone and physical ear model. Through the experiments results, the relationship between displacement of stapes and sound pressure by tympanic membrane was investigated.

The Implementation of Multi-Channel Audio Codec for Real-Time operation (실시간 처리를 위한 멀티채널 오디오 코덱의 구현)

  • Hong, Jin-Woo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2E
    • /
    • pp.91-97
    • /
    • 1995
  • This paper describes the implementation of a multi-channel audio codec for HETV. This codec has the features of the 3/2-stereo plus low frequency enhancement, downward compatibility with the smaller number of channels, backward compatibility with the existing 2/0-stereo system(MPEG-1 audio), and multilingual capability. The encoder of this codec consists of 6-channel analog audio input part with the sampling rate of 48 kHz, 4-channel digital audio input part and three TMS320C40 /DSPs. The encoder implements multi-channel audio compression using a human perceptual psychoacoustic model, and has the bit rate reduction to 384 kbit/s without impairment of subjective quality. The decoder consists of 6-channel analog audio output part, 4-channel digital audio output part, and two TMS320C40 DSPs for a decoding procedure. The decoder analyzes the bit stream received with bit rate of 384 kbit/s from the encoder and reproduces the multi-channel audio signals for analog and digital outputs. The multi-processing of this audio codec using multiple DSPs is ensured by high speed transfer of date between DSPs through coordinating communication port activities with DMA coprocessors. Finally, some technical considerations are suggested to realize the problem of real-time operation, which are found out through the implementation of this codec using the MPEG-2 layer II sudio coding algorithm and the use of the hardware architecture with commercial multiple DSPs.

  • PDF

Feasibility Calculation of FaSTMECH for 2D Velocity Distribution Simulation in Meandering Channel (사행하천의 2차원 유속분포 모의를 위한 FaSTMECH 모형의 적용성 검토)

  • Son, Geunsoo;You, Hojun;Kim, Dongsu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1753-1764
    • /
    • 2014
  • Numerical flow simulation models in the riverine environments have been widely utilized for analyzing flow dynamics in various degrees in researches and practical applications. However, most of the simulated results have been validated based on the data from indoor experimental models or very limited in-situ measurements. Therefore, it has been required to more accurately validate the performance of the numerical models in terms of the detailed field observations. In particular, it was also hard to validate the performances of the existing numerical models in the real meandered river channels that encompass more sophisticated flow and geometric structures. Recently, advancements of the modern flow measuring instrumentations such as acoustic Doppler current profilers (ADCPs) enabled us to efficiently acquire the detailed flow field in the broad range of river channels, thus that it became to be possible to accurately validate any numerical models with the field observations. In this study, based on the detailed flow measurements in a actual meandered river channel using ADCP, we validated FaSTMECH model in iRIC in terms of water surface elevation, which is relatively new but began to get highlighted in the research areas. As the validation site, a meandering channel in River Experiment Center of KICT was chosen, which has 6.5 m of width, 0.38m of flow depth, 1.54 m3/s of flow discharge, 0.61 m/s of mean flow velocity, and 1.2 of sinuosity. As results, whereas the FaSTMECH precisely simulated water surface elevation, simulated velocity field in the bend did not match well with ADCP dataset.

Seismic Amplitude and Frequency Characteristics of Gas hydrate Bearing Geologic Model (가스 하이드레이트 지층 모델의 탄성파 진폭 및 주파수 특성)

  • Shin, Sung-Ryul;Lee, Sang-Cheol;Park, Keun-Pil;Lee, Ho-Young;Yoo, Dong-Geun;Kim, Young-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.116-126
    • /
    • 2008
  • In gas hydrate survey, seismic amplitude and frequency characteristics play a very important role in determining whether gas hydrate exists. According to the variation of source frequency and scatterer size, we study seismic amplitude characteristics using elastic modeling applied at staggered grids. Generally speaking, scattering occurs in proportion to the square of source frequency and the scatterer volume, which has an effect on seismic amplitude. The higher source frequency is, the more scattering occurs in gas hydrate bearing zone. Therefore, BSR is hardly observed in high frequencies. On the other side, amplitude blanking zone and BSR is clearly observed in lower frequencies although the resolution is poor as a whole. Seismic reflections traveling through free-gas layer below gas hydrate bearing zone decay so severely a high frequency component that a low frequency term is dominant. Amplitude anomaly of BSR result from high acoustic impedance contrast due to free-gas, which is a very crucial factor to estimate gas hydrate bearing zone. Seismic frequency analysis is carried out using wavelet transform method that frequency component could be decomposed with time variation. In application of wavelet transform to the seismic physical experiments data, we can observe that reflections traveling through air layer, which corresponds to the free-gas layer, decay a high frequency component.

The Universal Gestures in Nongŭm: The Dynamic Techniques of Taegŭm Performance (소통을 위한 몸짓 - 농음의 문화상호적 해석 -)

  • Kim, Hyelim
    • (The) Research of the performance art and culture
    • /
    • no.33
    • /
    • pp.223-242
    • /
    • 2016
  • The Korean $taeg{\breve{u}}m$, a horizontal bamboo flute, is considered a representative wind instrument of Korean traditional music. Symbolized by its unique timbre and diverse techniques, this instrument transmits the beauty of Korea, and has become acknowledged even in international music scenes. Being a $taeg{\breve{u}}m$ player, composer, and ethnomusicology researcher, I have developed creative collaborations with musicians from Asian, electro-acoustic, jazz, and Western art music traditions developed outside my country of origin and tried to overcome musical boundaries through the 'intercultural performances' (after Turner 1988). Zooming in one collaboration, I detail the process of music creation and performance, collaborating with prominent Korean composer Kim $Taes{\breve{o}}ng$ (b.1967), who was commissioned by myself to write two compositions for the $taeg{\breve{u}}m$ and Western art music. The purpose is twofold: firstly, the modernization and appropriation of the Korean flute is briefly tracked down within the context of Western Art music. Secondly, a performance project is illustrated with the support of technical apparatuses such as DVD and CD recordings and delves further into the question of the 'cultural relativism' (Michael Tenzer, 2006: 7) through the interactive process. The performance-as-research, as a tool 'actualizing' (Richard Schechner 2003: 32) the hybridity, touches on critical domains in Ethnomusicology. The corresponding two parts discover, as Alan Merriam's(1964) 'tripartite model' suggests, the 'context' of Korean and Western cultures, the 'behaviour' of collaborating and performing and the 'sound' of improvised and composed productions in the course of music making.

Changes of Current and Wave Patterns Depending on Typhoon Pathways in a Shallow Channel between Jeju and Udo Island (태풍 경로에 따른 제주 우도수로에서의 해류와 파랑 특성 변화)

  • Hong, Ji-Seok;Moon, Jae-Hong;Yoon, Seok-Hoon;Yoon, Woo Seok
    • Ocean and Polar Research
    • /
    • v.43 no.4
    • /
    • pp.205-217
    • /
    • 2021
  • A shallow channel between Jeju and Udo Islands, which is located in the northeastern Jeju Island, is influenced by storm- or typhoon-induced currents and surface waves as well as strong tidal currents. This study examines the typhoon-induced current and wave patterns in the channel, using Acoustic Doppler Current Meter (ADCP) measurements and an ocean-wave coupled modeling experiment. Three typhoons were chosen - Chaba (2016), Soulik (2018), and Lingling (2019) - to investigate the responses of currents and waves in their pathways. During the pre-typhoon periods, dominant northward flow and wave propagation were observed in the channel due to the southeasterly winds before the three typhoons. After the passage of Chaba, which passed over the eastern side of Jeju Island, the northward flow and wave propagation were totally reversed to the opposite direction, which was attributed to the strong northerly winds on the left side of the typhoon. In contrast, in the cases of Soulik and Lingling, which passed over the western side of Jeju Island, strong southerly winds on the right side of the typhoons continuously intensified the northward current and wave propagation in the channel. The model-simulated current and wave fields reasonably coincided with observational data, showing southward/northward flow and wave propagation in response to the right/left side of the typhoon pathways. Typhoon-induced downwind flows, and surface waves could enhance up to 2m/s and 3m due to the strong winds that lasted for more than 12 hours. This suggests that the flow and wave patterns in the Udo channel are highly sensitive to the pathway of typhoons and accompanying winds; thus, this may be a crucial factor with regard to the movement of seabed sediments and subsequent coastal erosion.

Research on Vibration and Noise Characteristics of Steel Plate Girder Bridge with Embedded Rail Track System (레일매립궤도 시스템이 적용된 판형교의 진동 및 소음특성에 대한 연구)

  • Park, Jeung-Geun;Koh, Hyo-In;Kang, Yun-Suk;Jeong, Young-Do;Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.94-101
    • /
    • 2019
  • Most of the existing rail structures have undergone a lot of aging since a considerable period of time has passed from completion. In particular, among existing railway bridges, many of the plate girder bridges are older bridges that have lived 40 to 60 years or more. Since the treadmill is directly connected to the girder without the ballast, the running load of the vehicle is directly transmitted to the bridge. Therefore, the shock and noise applied to the bridge are larger than those of the ballast bridge, and the dynamic shock and vibration are also relatively large. Therefore, it is very urgent to develop appropriate maintenance, repair and reinforcement technology for existing steel plate bridge. In this study, the authors introduced the characteristics of embedded rail (ERS) developed for improving the performance of the existing plate girder bridge and the techniques solving the vibration and noise problems. In order to evaluate the vibration and noise reduction performance of ERS, a non-ballast plate girder bridge with 5m length of sleepers installed and a plate girder bridge with ERS were fabricated. And, then, the vibration response generated under the same excitation condition was measured and analyzed. Also, the radiated noise analysis was performed using the vibration response data obtained from the experiment as the input data of the acoustic analysis model. As a result of experiments and analyses, it was confirmed that the plate girder bridge's vibration using ERS was reduced by 15.0~18.8dB and the average noise was reduced by 7.7dB(A) more than the non-ballast bridge.