• Title/Summary/Keyword: Acoustic intensity

Search Result 373, Processing Time 0.026 seconds

Fast Evaluation of Sound Radiation by Vibrating Structures with ACIRAN/AR

  • Migeot, Jean-Louis;Lielens, Gregory;Coyette, Jean-Pierre
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.561-562
    • /
    • 2008
  • The numerical analysis of sound radiation by vibrating structure is a well known and mature technology used in many industries. Accurate methods based on the boundary or finite element method have been successfully developed over the last two decades and are now available in standard CAE tools. These methods are however known to require significant computational resources which, furthermore, very quickly increase with the frequency of interest. The low speed of most current methods is a main obstacle for a systematic use of acoustic CAE in industrial design processes. In this paper we are going to present a set of innovative techniques that significantly speed-up the calculation of acoustic radiation indicators (acoustic pressure, velocity, intensity and power; contribution vectors). The modeling is based on the well known combination of finite elements and infinite elements but also combines the following ingredients to obtain a very high performance: o a multi-frontal massively parallel sparse direct solver; o a multi-frequency solver based on the Krylov method; o the use of pellicular acoustic modes as a vector basis for representing acoustic excitations; o the numerical evaluation of Green functions related to the specific geometry of the problem under investigation. All these ingredients are embedded in the ACTRAN/AR CAE tool which provides unprecedented performance for acoustic radiation analysis. The method will be demonstrated on several applications taken from various industries.

  • PDF

Study on Smart Cooling Technology by Acoustic Streaming Generated by Ultrasonic Vibration Using 3D PIV (3차원 PIV를 활용한 초음파 진동에 의해 발생된 음향 유동을 이용한 스마트 냉각법 연구)

  • Lee, Dong-Ryul;Loh, Byoung-Gook;Kwon, Ki-Jung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.11
    • /
    • pp.1078-1088
    • /
    • 2010
  • In order to analyze the quantitative characteristics of acoustic streaming, experimental setup of 3-D stereoscopic PIV(particle imaging velocimetry) was designed and quantitative ultrasonic flow fields in the gap between the ultrasonic vibrator and heat source were measured. Utilizing acoustic streaming induced by ultrasonic vibration, surface temperature drop of cooling object was also measured. The study on smart cooling method by acoustic streaming induced by ultrasonic vibration was performed due to the empirical relations of flow pattern, average flow velocity, different gaps, and enhancement on cooling rates in the gap. Average velocity fields and maximum acoustic streaming velocity in the open gap between the stationary cylindrical heat source and ultrasonic vibrator were experimentally measured at no vibration, resonance, and non-resonance. It was clearly observed that the enhancement of cooling rates existed owing to the acoustic air flow in the gap at resonance and non-resonance induced by ultrasonic vibration. The ultrasonic wave propagating into air in the gap creates steady-state secondary eddy called acoustic streaming which enhances heat transfer from the heat source to encompassing air. The intensity of the acoustic streaming induced by ultrasonic vibration experimentally depended upon the gap between the heat source and ultrasonic vibrator. The ultrasonic vibration at resonance caused the increase of the acoustic streaming velocity and convective heat transfer augmentation when the flow fields by 3D stereoscopic PIV and temperature drop of the heat source were measured experimentally. The acoustic streaming velocity of air enhancement on cooling rates in the gap is maximal when the gap agrees with the multiples of half wavelength of the ultrasonic wave, which is specifically 12 mm.

Development of near field Acoustic Target Strength equations for polygonal plates and applications to underwater vehicles (근접장에서 다각 평판에 대한 표적강도 이론식 개발 및 수중함의 근거리 표적강도 해석)

  • Cho, Byung-Gu;Hong, Suk-Yoon;Kwon, Hyun-Wung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1062-1073
    • /
    • 2007
  • Acoustic Target Strength (TS) is a major parameter of the active sonar equation, which indicates the ratio of the radiated intensity from the source to the re-radiated intensity by a target. In developing a TS equation, it is assumed that the radiated pressure is known and the re-radiated intensity is unknown. This research provides a TS equation for polygonal plates, which is applicable to near field acoustics. In this research, Helmholtz-Kirchhoff formula is used as the primary equation for solving the re-radiated pressure field; the primary equation contains a surface (double) integral representation. The double integral representation can be reduced to a closed form, which involves only a line (single) integral representation of the boundary of the surface area by applying Stoke's theorem. Use of such line integral representations can reduce the cost of numerical calculation. Also Kirchhoff approximation is used to solve the surface values such as pressure and particle velocity. Finally, a generalized definition of Sonar Cross Section (SCS) that is applicable to near field is suggested. The TS equation for polygonal plates in near field is developed using the three prescribed statements; the redection to line integral representation, Kirchhoff approximation and a generalized definition of SCS. The equation developed in this research is applicable to near field, and therefore, no approximations are allowed except the Kirchhoff approximation. However, examinations with various types of models for reliability show that the equation has good performance in its applications. To analyze a general shape of model, a submarine type model was selected and successfully analyzed.

  • PDF

Phonetic Realizations of English Word Stress in Utterances (실제 상황에서 발화된 영어 단어 강세의 음성 실현)

  • Kim, He-Kyung;Kim, Soo-Jung
    • Speech Sciences
    • /
    • v.13 no.4
    • /
    • pp.89-105
    • /
    • 2006
  • This study examines the phonetic realizations of English word stress to identify the influence of experiment method on experiment results. Stimuli uttered by native and Korean ESL beginners in authentic conversations are extracted to be shuffled according to their positions in utterances and information structure. Results indicate that the acoustic characteristics of English word stress are realized depending on its position in utterances. The native speakers correlate the stressed syllables in shorter duration with higher pitch and stronger intensity at sentence-final positions unlike the previous experiments and the traditional definition that stressed syllables are uttered in longer duration with higher pitch and stronger intensity; at sentence-medial positions, the native speakers correlate the stressed syllables in longer duration with higher pitch and no regularity in intensity or in shorter duration with lower pitch and intensity depending on their conversational intention. Korean ESL beginners correlate the stressed syllables in shorter duration regardless of positions in sentences with no regularity in pitch and intensity. This study, thus, shows that a different experiment method may result in different results on the phonetic realizations of English word stress.

  • PDF

Numerical analysis for nearfield measurement error in a three-dimensional intensity probe. (3차원 인텐시티 프로브의 근거리 음장 측정에서의 오차 수치해석)

  • Kim, Suk-Jae;Jee, Suk-Kun;Suzuki, Hideo;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.41-50
    • /
    • 1994
  • We studied an inherent error be caused by a measuring acoustic intensity using probe which can measure simultaneously the three-dimensional acoustic intensity. This three-dimensional intensity probe was constructed with four microphones, proposed by Suzuki et al. . In the computer simulation, we analyzed the nearfield measurement error with arbitary direction and each of axis direction on the ideal point source and the plate sound source which have finite size. From the results, in case of point source, we obtained accurate measurement below about 1dB when the distance of measurement was about 2.5 times with the distance among microphones in this probe. And in the case of plate sound source, the nearfield measurement error was decreased as the length of one side became above 0.02m, we obtained accurate measurement below about 1dB when the length of one side is 0.2m. The nearfield measurement error of finite size sound is small to ignore. Therefore this probe is useful to measure nearfield intensity.

  • PDF

Comparison of the sound source localization methods appropriate for a compact microphone array (소형 마이크로폰 배열에 적용 가능한 음원 위치 추정법 비교)

  • Jung, In-Jee;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.47-56
    • /
    • 2020
  • The sound source localization technique has various application fields in the era of internet-of-things, for which the probe size becomes critical. The localization methods using the acoustic intensity vector has an advantage of downsizing the layout of the array owing to a small finite-difference error for the short distance between adjacent microphones. In this paper, the acoustic intensity vector and the Time Difference of Arrival (TDoA) method are compared in the viewpoint of the localization error in the far-field. The comparison is made according to the change of spacing between adjacent microphones of the three-dimensional microphone array arranged in a tetrahedral shape. An additional test is conducted in the reverberant field by varying the reverberation time to verify the effectiveness of the methods applied to the actual environments. For estimating the TDoA, the Generalized Cross Correlation-Phase transform (GCC-PHAT) algorithm is adopted in the computation. It is found that the mean localization error of the acoustic intensimetry is 2.9° and that of the GCC-PHAT is 7.3° for T60 = 0.4 s, while the error increases as 9.9°, 13.0° for T60 = 1.0 s, respectively. The data supports that a compact array employing the acoustic intensimetry can localize of the sound source in the actual environment with the moderate reflection conditions.

An Experimental Study of Comfortable Pitch and Loudness with Target Matching: Effects on Electroglottographic and Acoustic Measures

  • Choi, Seong Hee
    • Phonetics and Speech Sciences
    • /
    • v.4 no.4
    • /
    • pp.139-146
    • /
    • 2012
  • This study was designed to examine comfort levels of pitch and loudness with target matching and their effects on electroglottographic (EGG) and acoustic measures. Twelve speakers, six males and six females, were instructed to produce /a/ sustained vowel for three seconds at a comfortable pitch and loudness level without any instruction and with a target matching procedure of either a certain f0 or SPL separately with visual and auditory feedback. The range of pitch for females and males were presented by progressing up and down randomly at intervals of 5Hz from 150 Hz to 310 Hz (total 33 frequency targets) and from 85 Hz to 190 Hz (total 22 frequency targets), respectively. The loudness levels were 65, 75, 85, 95 dB (total of four intensity targets) for both males and females. Subjective estimations of comfortable levels were obtained using a 10-point equal-appearing interval rating scale following each phonation. The results showed that males and females demonstrated similar trends in loudness levels with greatest comfort at 75 dB, whereas pitch comfort ratings showed a greater variability with females having a wider range with target matching. In the comfort levels of individuals, most male and female speakers rated higher comfort at soft, rather than loud phonations. On the other hand, most male speakers perceived highest comfort levels below the comfort pitch levels they phonated under natural conditions. Higher frequency ranges, however, were perceived to be more comfortable than those of natural condition in most female speakers, although the comfortable pitch levels in spontaneous phonations were within the comfort level ranges determined by targeted phonations. When comparing acoustic (%jitter, %shimmer, SNR) and EGG measures (CQ%) between spontaneous comfortable phonations and targeted phonations produced by the same subject at similar f0 and intensity, no significant differences were observed (p>0.05). Thus, target matching procedures may be considered a compatible and alternative method to reduce the variability of comfortable pitch and loudness levels by eliciting consistent comfortable phonations.

Active Control of External Noise Radiated From Duct Using Sound Intensity (음향 인텐시티를 이용한 관 외부 방사 소음의 능동 제어)

  • 강성우;김양한
    • Journal of KSNVE
    • /
    • v.7 no.3
    • /
    • pp.427-437
    • /
    • 1997
  • Mean active intensity based active control for the cancellation of radiated noise out of the duct exit is studied. The active intensity control strategy is drerived based on the relation of the exterior sound field out of the duct termination and interior sound field of the duct. One of the characteristics of this control strategy is that the control performance can be maintained regardless of the sensor loction, compared with the conventional local pressure control methods at either interior downstream or exterior field positions. It is also suggested that the digital filtering for the active intensity control can be achieved by time-domain filtered-x LMP (Lest-Mean-Product) adaptive algorithm. Experiments for an open-ended duct are performed to compare the active intensity control performance with conventional pressure control one. Active control experiment of local sound pressure is conducted by widely used filtered-x LMS adaptive Algorithm and active intensity control implementaion uses the derived filter d-x LMP algorithm. It is shown that the exterior sound fileds was much better observable by sensing of the active intensity than by just sound pressure. It is also demonstrated that the global control performance of external field by acoustic intensity is superior to the conventional sound pressure control performance.

  • PDF

Analysis and Test of Dynamic Responses of Rocket Payload Section Induced by Acoustic Excitation (음향 가진에 의한 로켓 탑재부의 동적 응답 해석 및 시험)

  • Park, S.H.;Jeong, H.K.;Seo, S.H.;Jang, Y.S.;Yi, Y.M.;Cho, K.R.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.717-720
    • /
    • 2005
  • Acoustic loads generated by a rocket propulsion system cause severe random vibrations on payloads. In developing a new launch vehicle, a random vibration level must be specified before the detailed design of payloads or electronic equipments. This paper deals with prediction procedures of a random vibration level on payload section of KSLV-I. The prediction is based on statistical energy analysis. In order to verify the prediction methodology, test and analysis on a sub-scale payload section are performed. The predicted results subject to very high level of acoustic loads show a good agreement with the test results performed in the high intensity acoustic chamber. The predicted random vibration level on payload section of KSLV-I is also presented in this paper.

  • PDF

A judgment algorithm of the acoustic signal for the automatic defective manufactures detection in press process (음향방출 신호를 이용한 프레스 불량품 자동 판단 알고리즘)

  • Kim, Dong-Hun;Lee, Won-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.3
    • /
    • pp.76-82
    • /
    • 2010
  • A laborer always watched a process of production carefully but defective manufactures were inspected after press process. These inspections made a waste of human power and defective manufactures could make a serious damage of press mold. Therefore, AE(Acoustic Emission) system was introduced to prevention of the damage of the press molds, to a real time detection of defective manufactures and to save human power. AE system was introduced to solve this problem which is a detecting defective manufacture on real time and to prevent the damage of the press mold. In this research we get acoustic emission signal in accordance with weight and processing method of press by using AE sensor, Preamplifier, AE board signal board which occurs press processing and it analyzed various signal through using CMD8 software on the time. From the result, we found that the intensity and shape of the signal were changed according to the weight and processing type of the press. By using this special algorithm, it can judge the acoustic signal which occurs from press on real time.