• 제목/요약/키워드: Acoustic diffraction

검색결과 61건 처리시간 0.025초

A Diffraction Transfer Function Approach to the Calculation of the Transient Field of Acoustic Radiators

  • Lee, Chan-Kil
    • ETRI Journal
    • /
    • 제16권1호
    • /
    • pp.1-15
    • /
    • 1994
  • A computationally-efficient approach to the calculation of the transient field of an acoustic radiator was developed. With this approach, a planar or curved source, radiating either continuous or pulsed waves, is divided into a finite number of shifted and/or rotated versions of an incremental source such that the Fraunhofer approximation holds at each field point. The acoustic field from the incremental source is given by a 2-D spatial Fourier transform. The diffraction transfer function of the entire source can be expressed as a sum of Fraunhofer diffraction pattern of the incremental sources with the appropriate coordinate transformations for the particular geometry of the radiator. For a given spectrum of radiator velocity, the transient field can be computed directly in the frequency domain using the diffraction transfer function. To determine the accuracy of the proposed approach, the impulse response was derived using the inverse Fourier transform. The results obtained agree well with published data obtained using the impulse response approach. The computational efficiency of the proposed method compares favorably to those of the point source method and the impulse response approach.

  • PDF

발사체 이륙 시 음향 하중 예측 정확도 향상 (Improved Prediction of Lift-off Acoustic Loads for a Launch Vehicle)

  • 최상현;이정권;이익진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 춘계학술대회 논문집
    • /
    • pp.207-210
    • /
    • 2014
  • This paper is concerned with the prediction of lift-off acoustic loads for a launch vehicle. Intense acoustic load is generated when a launch vehicle is lifted off, and it can induce vibrations of a launch vehicle which cause damage or malfunction of a launch vehicle and a satellite. Lift-off acoustic loads of NARO are predicted by the modified Eldred's second method and the result is compared with the measured data in flight test. The prediction shows similar peak and shape of spectrum to the test data, but some discrepancy can be observed due to the predicted margin. In order to reduce such discrepancy, the sound pressure levels with four source distribution assumptions are calculated. Also, the surface diffraction effects are considered in the predict ion of lift-off acoustic loads, and the predicted result is more similar to the test data.

  • PDF

평면파 입사시 신경회로망을 이용한 회절현상의 역모델링 (The Inverse Modeling of Diffraction Phenomena under Plane Wave Incidence using Neural Network)

  • 나희승
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1175-1182
    • /
    • 2000
  • Diffraction systematically causes error in acoustic measurements. Most probes are designed to reduce this phenomenon. On the contrary, this paper proposes a spherical probe a] lowing acoustic inten sity measurements in three dimensions to be made, which creates a diffracted field that is well-defined, thanks to analytic solution of diffraction phenomena. Six microphones are distributed on the surface of the sphere along three rectangular axes. Its measurement technique is not based on finite difference approximation, as is the case for the ID probe but on the analytic solution of diffraction phenomena. In fact, the success of sound source identification depends on the inverse models used to estimate inverse diffraction phenomena, which has nonlinear properties. In this paper, we propose the concept of nonlinear inverse diffraction modeling using a neural network and the idea of 3 dimensional sound source identification with better performances. A number of computer simulations are carried out in order to demonstrate the diffraction phenomena under various angles. Simulations for the inverse modeling of diffraction phenomena have been successfully conducted in showing the superiority of the neural network.

Heuristic Physical Theory of Diffraction for Impedance Polygon

  • Lee, Keunhwa;Park, Sanghyun;Kim, Kookhyun;Seong, Woojae
    • International Journal of Ocean System Engineering
    • /
    • 제3권1호
    • /
    • pp.22-32
    • /
    • 2013
  • A heuristic physical theory of diffraction (PTD) for an acoustic impedance wedge is proposed. This method is based on Ufimtsev's three-dimensional PTD, which is derived for an acoustic soft or hard wedge. We modify the original PTD according to the process of physical optics (or the Kirchhoff approximation) to obtain a 3D heuristic diffraction model for an impedance wedge. In principle, our result is equivalent to Luebbers' model presented in electromagnetism. Moreover, our approach provides a useful insight into the theoretical basis of the existing heuristic diffraction methods. The derived heuristic PTD is applied to an arbitrary impedance polygon, and a simple PTD formula is derived as a supplement to the physical optics formula.

소나 돔 음향창 시편 투과손실 측정/분석 방법 고찰 (A Study on the Measurement and Analysis Method for the Acoustic Transmission Loss of the Material for the Acoustic Window of Sonar Dome)

  • 정우진;한승진;김원호;신구균;전재진
    • 한국소음진동공학회논문집
    • /
    • 제16권7호
    • /
    • pp.729-738
    • /
    • 2006
  • Knowledge of acoustic transmission loss of acoustic window material has a great importance for the sonar performance in ship. The purpose of this study was to investigate the measurement and analysis method for the acoustic transmission loss of the acoustic window materials for sonar dome. The measurement and analysis were carried out in water with GRP material. Transmission losses were calculated based on integrated direct and transmitted signals. The experimental setup enabled to vary the angle of incidence. Thus the transmission loss data could be expressed as the function of frequency and angle of rotation. In this paper, diffraction effect of incident angle, size of specimen with test material, transmission analysis method and multiple waves as incident acoustic signal were discussed.

소나 돔 음향창 시편 투과손실 측정/분석 방법 고찰 (A Study on the Measurement and Analysis Method for the Acoustic Transmission Loss of the Material for the Acoustic Window of Sonar Dome)

  • 정우진;한승진;김원호;신구균;전재진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1183-1189
    • /
    • 2006
  • Knowledge of acoustic transmission loss of acoustic window material has a great Importance for the sonar performance in ship. The purpose of This study was to investigate the measurement and analysis method for me acoustic transmission loss of the acoustic window materials for sonar dome. The measurement and analysis were carried out in water with GRP material. Transmission losses were calculated based on integrated direct and transmitted signals. The experimental setup enabled to vary the angle of incidence. Thus the transmission loss data could be expressed as the function of frequency and angle of rotation. In this paper, diffraction effect of incident angle, size of specimen with test material, transmission analysis method and multiple waves as incident acoustic signal wet-e discussed

  • PDF

웨지가 있는 원심 임펠러의 유동장 및 방사 음향장 해석(II) -원심홴의 산란 음향장 예측- (An Analysis of the Flow Field and Radiation Acoustic Field of Centrifugal Fan with Wedge -The Prediction of the Scattered Sound Field-)

  • 이덕주;전완호
    • 대한기계학회논문집B
    • /
    • 제25권9호
    • /
    • pp.1165-1174
    • /
    • 2001
  • The objective of this study is to understand the generation mechanism of sound and to develop a prediction method for the acoustic pressure field of a centrifugal fan. If the fan is operating at the free field without the casing, the acoustic analogy is a good method to predict the acoustic of the fan. But, the casing gives a dominant effect to the radiated sound field and the scattering effect of casing should be considered. So, in this paper the Kirchhoff-BEM is developed, which can consider the scattering effect of the rigid body. In order to consider the scattering and diffraction effects owing to the casing, BEM is introduced. The source of BEM is newly developed, so the sound field of the centrifugal fan can be obtained. In order to compare the predicted one with experimental data, a centrifugal impeller and a wedge are used in the numerical calculation and the results are compared with the experimental data. Reasonable results are obtained not only for the peak frequencies but also for the amplitudes of the tonal sound. The radiated acoustic field shows the diffraction and scattering effects of the wedge clearly.

RF 소자의 표면탄성파 공진에 대한 광학적 측정 (Optical metrology for resonant surface acoustic wave in RF device)

  • 박준오;장원권
    • 한국산학기술학회논문지
    • /
    • 제11권9호
    • /
    • pp.3435-3440
    • /
    • 2010
  • 표면탄성파를 이용한 RF소자의 성능을 단순히 작동 유무로만 평가할 수 있는 전기적인 성능 평가방법과 달리 위치에 따른 표면탄성파의 형성 정도를 실시간으로 검사할 수 있는 광학적 방법을 제시하였다. 광학적 방법을 이용한 표면 탄성파의 측정 조건과 한계를 제시하였고 간섭 및 회절 현상을 이용하여 RF신호의 입력 유무에 따른 광학적 해석을 하였다. 단일 모드 레이저를 이용하여 중심 주파수가 105MHz인 중계기 필터의 동작을 실험적으로 측정하고 이론적으로 분석하였다. 본 논문에서는 다기능 서비스를 제공하는 복합 주파수 RF 모듈의 고품질화를 위한 방법으로 표면탄성파의 에너지 분포를 시각화하고 실시간으로 평가할 수 있는 광학적 방법을 제시하였다.

실내음향 해석을 위한 위상 빔 추적법의 사용시 오차에 관하여 (On the Errors of the Phased Beam Tracing Method for the Room Acoustic Analysis)

  • 정철호;이정권
    • 한국음향학회지
    • /
    • 제27권1호
    • /
    • pp.1-11
    • /
    • 2008
  • 기하음향학 방법들을 이용한 중주파수 해석의 어려움을 해결하기 위하여 소리의 전파에서 위상 정보를 고려한 위상 기하음향학 방법이 제안되었다. 위상 기하음향학 방법은 위상정보를 고려하여 중주파수 대역의 간섭 현상을 설명할 수 있는 장점을 가지고 있다. 그러나 이러한 방법들을 이용하여 소리의 파동성으로 대표되는 저주파수 현상들을 모두 설명할 수 없다. 특히 저주파수 대역에서는 모서리나 장애물에 의한 회절현상을 고려하지 못하여 전달함수나 충격응답의 예측시 오차가 발생한다. 또한 실수인 흡음 계수를 사용한 해석 결과는 측정치와 차이를 보이므로 반사 계수의 잘못된 위상 정보는 교정되어야 한다. 본 연구에서는 균일 회절 이론을 병합한 위상 빔 추적법의 결과를 기존의 위상 빔 추적법의 결과와 비교하였다. 또한 벽면 반사계수의 위상을 변화시키며 위상 정보의 영향을 조사하였다. 제안된 오차 보정 방법들을 이용하면, 좀더 낮은 주파수 대역까지 정확성을 향상시켜 위상 빔 추적법을 실내음향 예측에 적용할 수 있다.

Comparison of Different Techniques for Measurement of Cold Work in Mild Steel

  • Badgujar, B.P.;Jha, S.K.;Goswami, G.L.
    • 비파괴검사학회지
    • /
    • 제23권6호
    • /
    • pp.616-621
    • /
    • 2003
  • There are various Non-Destructive Evaluation (NDE) techniques used for measurement of residual stresses in material, such as magnetic methods, X-ray diffraction, Ultrasonic velocity measurement etc. The capabilities, applications and limitations of these techniques for evaluation of cold work/plastic deformation were studied and compared. Mild steel plates were subjected to different degree of cold deformation and were analyzed by Magneto-mechanical Acoustic Emission (MAE), Barkhausen Noise (BN) and magnetic properties (hysteresis loop parameters analysis). Further, these specimens were analyzed by X-ray diffraction and ultrasonic velocity measurements. The microhardness measurement and microstructure studies of these cold worked plates were also carried out. The results of all these studies and comparison of different techniques are discussed in this paper.