• Title/Summary/Keyword: Acoustic detection

Search Result 700, Processing Time 0.022 seconds

An Acoustic Echo Canceler for Hands-Free Telephony, Considering Double Talk and Environment Noise (동시통화 및 주변 잡음을 고려한 핸즈프리 환경의 반향제거기)

  • Kim, Hyun-tae;Lee, Chan-Hee;Park, Jang-sik
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.471-473
    • /
    • 2009
  • In this paper, we propose a double talk and noise robust acoustic echo canceler for hands-free telephony applications. The proposed system includes a double-talk detection method that detects the double-talk durations, which uses covariance between microphone input signa and estimated microphone input signal. And proposed adaptive algorithm for estimating acoustic echo path, uses normalized auto-covariance matrix of input signal with multiplication of residual error power and projection order of AP(affine projeciton) algorithm. It is confirmed that the proposed algorithm shows better performance from acoustic interference cancellation (AIC) viewpoint in double talk and noisy environments.

  • PDF

Noise Mitigation for Target Tracking in Wireless Acoustic Sensor Networks

  • Kim An, Youngwon;Yoo, Seong-Moo;An, Changhyuk;Wells, Earl
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1166-1179
    • /
    • 2013
  • In wireless sensor network (WSN) environments, environmental noises are generated by, for example, small passing animals, crickets chirping or foliage blowing and will interfere target detection if the noises are higher than the sensor threshold value. For accurate tracking by acoustic WSNs, these environmental noises should be filtered out before initiating track. This paper presents the effect of environmental noises on target tracking and proposes a new algorithm for the noise mitigation in acoustic WSNs. We find that our noise mitigation algorithm works well even for targets with sensing range shorter than the sensor separation as well as with longer sensing ranges. It is also found that noise duration at each sensor affects the performance of the algorithm. A detection algorithm is also presented to account for the Doppler effect which is an important consideration for tracking higher-speed ground targets. For tracking, we use the weighted sensor position centroid to represent the target position measurement and use the Kalman filter (KF) for tracking.

Calculus of the defect severity with EMATs by analysing the attenuation curves of the guided waves

  • Gomez, Carlos Q.;Garcia, Fausto P.;Arcos, Alfredo;Cheng, Liang;Kogia, Maria;Papelias, Mayorkinos
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.195-202
    • /
    • 2017
  • The aim of this paper is to develop a novel method to determine the severity of a damage in a thin plate. This paper presents a novel fault detection and diagnosis approach employing a new electromagnetic acoustic transducer, called EMAT, together with a complex signal processing method. The method consists in the recognition of a fault that exists within the structure, the fault location, i.e. the identification of the geometric position of damage, and the determining the significance of the damage, which indicates the importance or severity of the defect. The main scientific novelties presented in this paper is: to develop of a new type of electromagnetic acoustic transducer; to incorporate wavelet transforms for signal representation enhancements; to investigate multi-parametric analysis for noise identification and defect classification; to study attenuation curves properties for defect localization improvement; flaw sizing and location algorithm development.

Impact Damage Detection of Smart Composite Laminates Using Wavelet Transform (웨이블릿 변환을 이용한 스마트 복합적층판의 충격 손상 검출 연구)

  • 성대운;오정훈;김천곤;홍창선
    • Composites Research
    • /
    • v.13 no.1
    • /
    • pp.40-49
    • /
    • 2000
  • The objective of this research is to develop the impact monitoring techniques providing impact identification and damage diagnostics of smart composite laminates susceptible to impacts. This can be implemented simultaneously by using the acoustic waves by the impact loads and the acoustic emission waves from damage. In the previous research, we have discussed the impact location detection process in which impact generated acoustic waves are detected by PZT using the improved neural network paradigm. This paper describes the implementation of time-frequency analysis such as the Short-Time Fourier Transform (STFT) and the Wavelet Transform (WT) on the determination of the occurrence and the estimation of damage.

  • PDF

Analysis of Various Acoustic Emission Signal for the Automatic Detection of Defective Manufactures in Press Process (프레스 공정에서의 불량품 자동 검출을 위한 다양한 음향방출 신호의 분석)

  • Kim, Dong-Hun;Park, Se-Myung;Lee, Won-Kyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.4
    • /
    • pp.14-25
    • /
    • 2010
  • Small cracks or chips of a product appear very frequently in the course of continuous production of an automatic press process system. These phenomena became the cause of not only defective product but also damage of a press mold. In order to solve this problem AE(Acoustic emission) system was introduced. AE system was expected to be very effective to real time detection of the defective product and for the prevention of the damage in the press molds In this study, for the pick and analysis of AE signals generated from the press process, AE sensors/pre-amplifier/analysis and processing board were used as frequently found in the other similar cases. For the analysis and processing the AE signals picked in real time from the normal or the detective products, specialized software called AE-win(software for processing AE signal from Physical Acoustics Corporation) was used. As a result of this work it was conformed that intensity and shape of the various AE signals differ depending on the weight of the press and thickness of sheet and process type.

Crack Detection of Composite Cylinders under external pressure using the Acoustic Emission (AE 기법을 이용한 외부수압을 받는 복합재 원통의 균열 검출)

  • Park, Jin-Ha;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.25-30
    • /
    • 2011
  • The studies on the non-destructive testing methods of the composite materials are very important for improving their reliability and safety. AE(Acoustic Emission) can evaluate the defects by detecting the emitting strain energy when elastic waves are generated by the generation and growth of a crack, plastic deformation, fiber breakage, matrix cleavage or delamination. In this paper, the AE signals of the filament wound composite cylinder and sandwich cylinder during the pressure test were measured and analyzed. The signal characteristics of PVDF sensors were measured, and an AE signal analyzer which had the band-pass filter and L-C resonance filter were designed and fabricated. Also, the crack detection capability of the fabricated AE signal analyzer wes evaluated during the pressure tests of the filament wound composite cylinder and the sandwich cylinder.

Long Range Active Acoustic System for Fish Finding (장거리 능동 어탐의 연구)

  • Jang, Ji-Won;Park, Jong-Man;Lee, Un-Hui
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.24 no.1
    • /
    • pp.1-6
    • /
    • 1988
  • For the purpose of making the detection range of fish detection system more longer and computerizing the system a parametric sound source, a timer and a digitizing circuit for the Apple II computer have been studied. The parametric sound of 5 KHz generated by passing AND gate two signals from carrier signal generator of 200KHz with modulator of 5KHz. This parametric acoustic source of 5KHz difference frequency had more higher directional resolution of 10 degrees than single frequency sound of 200KHz. Peripheral interface adaptor MC 6821 was adopted for interfacing to the Apple II personal computer. The timer consisted of six decade binary coded decimal counters (74 LS 190), and the digitizing circuit consisted of a sample and hold (LF 398) and an A/D converter(ADC 0808). The timer with 10KHz clock pulse had the measuring time from 0.1msec to 100sec. This time measuring range was satisfactory for the aim of the fish finding acoustic system.

  • PDF

Experimental study on acoustic emission characteristics of reinforced concrete components

  • Gu, Aijun;Luo, Ying;Xu, Baiqiang
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.67-79
    • /
    • 2015
  • Acoustic emission analysis is an effective technique for monitoring the evolution of damage in a structure. An experimental analysis on a set of reinforced concrete beams under flexural loading was carried out. A mixed AE analysis method which used both parameter-based and signal-based techniques was presented to characterize and identify different failure mechanisms of damage, where the signal-based analysis was performed by using the Hilbert-Huang transform. The maximum instantaneous energy of typical damage events and the corresponding frequency characteristics were established, which provided a quantitative assessment of reinforced concrete beam using AE technique. In the bending tests, a "pitch-catch" system was mounted on a steel bar to assess bonding state of the steel bar in concrete. To better understand the AE behavior of bond-slip damage between steel bar and concrete, a special bond-slip test called pullout test was also performed. The results provided the basis of quantitative AE to identify both failure mechanisms and level of damages of civil engineering structures.

An acoustic sensor fault detection method based on root-mean-square crossing-rate analysis for passive sonar systems (수동 소나 시스템을 위한 실효치교차율 분석 기반 음향센서 결함 탐지 기법)

  • Kim, Yong Guk;Park, Jeong Won;Kim, Young Shin;Lee, Sang Hyuck;Kim, Hong Kook
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.30-38
    • /
    • 2017
  • In this paper, we propose an underwater acoustic sensor fault detection method for passive sonar systems. In general, a passive sonar system displays processed results of array signals obtained from tens of the acoustic sensors as a two-dimensional image such as displays for broadband or narrowband analysis. Since detection result display in the operation software is to display the accumulated result through the array signal processing, it is difficult to determine the possibility where signal may be contaminated by the fault or failure of a single channel sensor. In this paper, accordingly, we propose a detection method based on the analysis of RMSCR (Root Mean Square Crossing-Rate), and the processing techniques for the faulty sensors are analyzed. In order to evaluate the performance of the proposed method, the precision of detecting fault sensors is measured by using signals acquired from real array being operated in several coastal areas. Besides, we compare performance of fault processing techniques. From the experiments, it is shown that the proposed method works well in underwater environments with high average RMS, and mute (set to zero) shows the best performance with regard to fault processing techniques.

Experiment and Analysis of Backscattering Signals According to Presence or Absence of Chloroform (클로로폼 침적 유무에 따른 후방산란신호 측정 실험 및 분석)

  • Him Chan Seo;Jee Woong Choi;Yongmyung Kim;Moonjin Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.spc
    • /
    • pp.18-22
    • /
    • 2022
  • Because it is difficult to apply direct and optical detection techniques to sunken hazardous and noxious substances (HNS), effective acoustic detection techniques are required to detect sunken HNS in water. In this study, the possibility of acoustic detection of sunken HNS was investigated through backscattering signal measurement experiments using chloroform, a sunken HNS. After establishing a pool in an acrylic tank, backscattering signals were measured according to the presences or absence of chloroform by varying the grazing angle from 90° to 50° in 0.5° intervals using a pan&tilt system. A directional transducer transmitted and received sinusoidal signals with a frequency of 200 kHz and a pulse length of 25 ㎲ in a monostatic state. When chloroform was deposited, the received level of the backscattering signal at the interface between water and chloroform became low at a grazing angle of approximately 80° or smaller. Based on the backscattering signal results obtained at the interface between water and chloroform, the possibility of acoustic detection of sunken HNS was demonstrated.