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Abstract 
 

In wireless sensor network (WSN) environments, environmental noises are generated by, for 

example, small passing animals, crickets chirping or foliage blowing and will interfere target 

detection if the noises are higher than the sensor threshold value. For accurate tracking by 

acoustic WSNs, these environmental noises should be filtered out before initiating track. This 

paper presents the effect of environmental noises on target tracking and proposes a new 

algorithm for the noise mitigation in acoustic WSNs. We find that our noise mitigation 

algorithm works well even for targets with sensing range shorter than the sensor separation as 

well as with longer sensing ranges. It is also found that noise duration at each sensor affects the 

performance of the algorithm. A detection algorithm is also presented to account for the 

Doppler effect which is an important consideration for tracking higher-speed ground targets. 

For tracking, we use the weighted sensor position centroid to represent the target position 

measurement and use the Kalman filter (KF) for tracking.  
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1. Introduction 

For tracking ground vehicles or underwater targets,  acoustic Wireless Sensor Networks 

(WSNs) has been regarded to be useful due to recent advancement of micro sensors 

technology [1,18]. 

A number of tracking methods for a single ground target tracking have been proposed in the 

literature for WSNs type applications. Mechitov et al. [1] and Kim et al. [2] and Wang et al. [3], 

[4] used geometric methods for target position estimation. Ribeiro et al. [5] developed Kalman 

filter (KF) based recursive algorithms for distributed state estimate based on the sign of 

innovations (SOI). Recently, a number of authors [6,7,8] chose the particle filters (PF) over KF 

for target tracking in acoustic WSNs environments claiming that KF is not an optimal filter as 

the system and measurement process are not linear in real environments. For the application of 

PF to acoustic WSNs, PFs with lower computational complexity were proposed [14,15] and 

similar results were reported by other authors [10,11,12,13]. As an improvement over PF, Teng 

et al. [9] applied a variational filter (VF) for target tracking. The study of target tracking in 

acoustic WSNs has been extended to multiple target tracking in the areas of multiple-source 

localization [19], and multiple target detection and tracking [20,21]. 

All the previous studies mentioned above have limited application to use their detection and 

tracking algorithm in real acoustic WSNs environments. They use the power law for 

simulating target sound power detection by the sensors in the field and use the same power law 

for modeling the detection in their trackers. Their use of the power law excludes the Doppler 

effect in their detection simulation and makes the detection model in their tracker susceptible 

to mismatch with the detection by the sensors deployed in real environments [8]. The wireless 

acoustic sensors are not only subject to Doppler effect but also are prone to be disturbed by 

surrounding noises and thus the tracking results will be affected severely by the environmental 

noises. None of the previous studies mentioned above studied the noise and Doppler effect on 

acoustic WSNs target detection and tracking. 

In order to remedy the shortfalls of the previous studies which use the power law detection 

model, we developed a realistic detection algorithm where the Doppler effect appears 

naturally depending on the target speed [16]. For target position measurement, we used the 

centroid of the detecting sensor positions weighted with detecting sound power.  Our realistic 

detection model warrants no mismatch of detection between the tracker and the sensors 

deployed in the field. Our KF based tracker shows that computing speed is much faster than 

the speed of more sophisticated PF and VF but track accuracy is comparable with those 

trackers for linear and accelerated target motions. The detection model enabled us to study 

various environmental effects including Doppler effect, detection message delay and message 

collision at the fusion center, and different sampling time steps on track accuracy. Our study 

showed that the Doppler effect affects the track accuracy through the bias of target position 

measurement for higher target speed and demonstrated that the track accuracy is sensitive to 

these environmental effects.  

Even though our previous study [16] made a significant progress for acoustic WSNs target 

tracking in realistic environments, the study did not reflect noisy military environments in the 

simulation. The wireless acoustic sensors will detect numerous noises from the surrounding 

environment and the sensors will send detection message to the fusion center whenever the 

detecting sound is higher than the sensor threshold regardless of the origin of the sound. The 

noises reported by the sensors adversely affect the centroid computation as a target position 
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measurement and severely disrupt accurate target tracking. In order to deploy acoustic WSNs 

tracking system successfully in real environments, the development of noise mitigation 

algorithm is a requirement. 

In this paper, we present how the environmental noises affect target detection and propose a 

new algorithm for environmental noise mitigation that works well for various target sound 

powers. 

This paper is organized as follows: Section 2 describes the detection and tracking 

framework. It gives a detailed description of Doppler effect in the sensor detection simulation. 

This section is a summary of our previous paper [16] and is given for the completeness of this 

paper. In Section 3, we propose a new algorithm for environmental noise mitigation and show 

the mitigation results for various target sound powers. Section 4 discusses the implication of 

our results and future work.  

2. Detection and Tracking Framework 

Detailed description of our detection and tracking models that includes Doppler effect is given 

in our previous paper [16], but for the completeness of this paper a brief description of the 

models is shown below. 

2.1 Description of Acoustic WSNs 

We assume that the wireless sensors are distributed in a uniform grid of 50 by 50 with sensor 

separation (the distance between the sensors), ∆s, being 25 meters in the sensing region. So the 

total number of sensors, Ns, deployed in the field is 2500. This distribution is reasonable for 

the detection and tracking of ground vehicles with approximate speeds of 20 m/sec and 

sensing range of 15 ~ 75 meters.  Here, sensing range stands for the maximum distance from 

the target at which a sensor can detect the target sound above the sensor threshold. A target 

with higher sound power has longer sensing range than a target with lower sound power. Each 

sensor does not know the origin of detecting sound and sends detecting information to the 

fusion center when the detecting sound power is higher than its threshold value without 

communicating between sensors. Each sensor has its own unique ID that translates into its 

position. 

2.2 Algorithm for Target Sound Detection with Doppler Effect 

The target sound detection model with Doppler effect can be explained with Fig. 1, Fig. 1 (a) 

shows the target position moving from left to right with a constant speed at times t0, t1, t2, and 

t3 and the sound wave propagation from respective target positions in the time step, t. At t = t0, 

the target at x=x0 starts to send sound and at t = t1 the target is at x = x1 and sound propagates by                                 

d0 = Vs Δt  from x0. Here Vs is the speed of sound. At t = t2, the target moves to x = x2 and sound 

from x0 propagates by                       and the sound from x1 propagates by                  .  .       At subsequent 

time steps, the target and sound propagate in similar fashion as at the previous time steps. 

Because the target speed is set to be more than half of the sound speed in the figure, the 

Doppler effect is clearly seen where the sound wavelength in the forward direction is shorter 

than that in the rear direction and the target position is shifted to forward from each center of 

the propagation. 

Fig. 1 (b) shows target sound detection regions with shaded areas at each time step. If the 

sensors are distributed evenly and the sensing range, rs, is set to be large to cover multiple 

sensors in the range, the sensors in the shaded areas of Fig. 1 (b) detect target sound as long as 

the sound signal is higher than the threshold value of the sensors. We note that some sensors in 

tVd s  20
tVd s 1
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the detection region receive the sound signal from more than one previous target positions. We 

see some gaps at t = t2 and t3 in which the sensors do not detect the sound. The gaps are due to 

the finite time step. The time step, t, is set to be 0.005 sec in our simulation.  

For the simulation, target motion is described by the following discrete equations. 
                                                             

(1) 
 

 
 

 
Here,                 are target position, velocity and acceleration at a time index k.                    

The sound propagation from the target position of each previous time step can be expressed by 

the following equation. 
                                                                               

(2) 
 

 
Vs is the sound speed,  j (= 1,2,…, k-1) is the index of previous time steps, dj,k is the sound 

propagation distance at the time of k from the target position at the previous time index  j,             

is the sound wave front position at the time of k propagating from the target position at 

previous time step j, and       is the target position at the previous time step j.  
 
 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. (a) Sound wave propagation from a moving target. Target position and the center of each sound 

propagation at each time step are shown with solid and clear diamond respectively. Each arrow shows 

sound propagation from each propagation center. (b) Sound detection regions at each time step are 

shown with shades. Different shades are from different propagation centers. 

The distance between a sensor and a target position at j can be expressed as follows. 

 

                                                                       (3) 

where     is a sensor position and ds,j is the distance from the sensor of s to the target position at 

the previous time j. Any sensor that satisfies the following conditions at the time step of k can 

detect the target sound. 

                                                                       
          (4) 
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where Ps is the target sound power at the sensor of s, Pt is the sound power generated by the 

target, and s  is the sensor threshold value. The summation is over the previous time steps j 

which satisfies the first equation of (4). For our simulation we set α = 2 but this can be changed 

depending on the environmental conditions in the sensor network region. We emphasize here 

that our tracking result is independent of any sound propagation model as long as the sound 

model describes sound propagation realistically. 

2.3 Tracking Framework 

For the passive acoustic sensors with no range measurement capability, the target position can 

be measured by computing the centroid of the detecting sensors. Two different centroids were 

considered, one is the unweighted (or geometric) and the other is the weighted centroid. The 

centroid weighted with detecting sound power is a better target position measurement because 

the centroid is closer to the true target position. The geometric centroid is the same as the 

power law detection model which was used by all the previous work mentioned in the 

introduction.  

In our previous paper [16], we showed that the KF is near optimal for detection parameters 

used in the paper if we use the weighted centroid of detecting sensors as target position 

measurement.  

The Doppler effect on the target position measurement through the centroids was studied in 

our previous study [16] for target speed  10 ~ 50 m/s and the sensing range of 30 ~ 75 meters. 

We computed the difference between the target true position (     ) and the centroid (    ) as 

 
          (5) 
 

The difference is considered as a measurement error. 

In our previous study, we found that dc from weighted centroid fluctuates around zero with 

time during track but the fluctuation center is a little bit shifted to positive with geometric 

centroid for target speed of 10 m/sec. For target speed 50 m/s, the measurement bias is 

significant for geometric centroid and the bias is noticeable even for weighted centroid. It was 

found that the measurement bias is unavoidable even for weighted centroid for target speed 

greater than 50m/sec. But as most of military ground vehicles have speed much less than 

50m/sec we may say that the measurement is almost unbiased with the weighted centroid. We 

also found that Doppler effect affects the track accuracy through target position measurement 

bias. For target speed 50 m/s, track position error with the geometric centroid was found to be 

about four times higher than the position error with weighted centroid. For speed of 10 m/s, the 

geometric centroid gives the track error about 1.5 times higher than the error of the weighted 

centroid. 

3. Environmental Noise Effects on Tracking 

There are two types of noises, one is a random noise caused by sensor electronics and/or 

continuous noises from the sensing region which are distributed over the whole sensors in the 

field. The power distribution of this type of noise can be expressed as Gaussian or white noises. 

In order to filter this kind of noise, a threshold value is set on each sensor. If a detecting sound 

power is higher than the threshold, the sensor regards the sound as from a target and sends 

detection information to a fusion center. For simplicity of the problem, we assume that the 

detection probability is 100% if detecting power is above the threshold. The other type of noise 

is generated by, for example, passing animals or nearby plants in windy environments which 

ctc xxd

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impacts certain local sensors sporadically. These noises are assumed to be distributed over 

randomly selected sensors and the duration of the noise at each sensor varies from sensor to 

sensor. If the noise is higher than the sensor threshold, the sensor regards it as coming from a 

target and sends detection information to a fusion center. Thus, this type of noise will interfere 

with target sound and degrades the target detection and track accuracy severely. For accurate 

target tracking in real environments, this type of random noise should be filtered before 

tracking by the fusion center. In this section, we present an algorithm for mitigating this kind 

of environmental noises. 

3.1 Random Distribution of Noises Over The Sensing Region 

The environmental noise is assumed to be distributed randomly over the sensors and the 

duration of the noise on each sensor varies depending on the origin of noises. For the 

simulation, we assume that 1 ~ 6% of the sensors deployed in the field detect the noises at any 

time step and the duration of noises in each sensor varies in 0.1 ~ 1.0 sec. The noise duration is 

reasonable for the noises generated by some small animal passing, crickets chirping or foliage 

blowing. This environmental noise model is supported by [23] which performed a statistical 

analysis of environmental noise measurements and found that the noises are highly 

non-stationary and non-Gaussian and their duration is less than 1 sec. 

The noise power is assumed to fluctuate randomly between one and two times of the 

threshold value as                

          (6)    
 

where s  is the noise power at a sensor s, γs is the sensor threshold value and   is a random 

number generator uniformly distributed between 0 and 1. The set of sensors, D, that detect the 

noise are determined by the random number generator such that 

 

          (7) 

 

for 6% noise distribution for example. The total sound power detected by a sensor s is  

 

         (8) 

 

where Ps is the target sound detected by sensor s (see eq. (4)).  

 

 

 

 

 

 

 

 

 

 
 

Fig. 2. The target (diamond) and the sensors (red) which detect target sound as well as the noise above 

the threshold. The blue dots are sensors in the grid form. 
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Fig. 2 shows a target (diamond) and the sensors (red) that detect the sound above the 

threshold. The sensors within the target sensing range detect target sound (some of them may 

also detect the noise). Some of the sensors that are outside the target sensing range detect the 

noise (red) and are distributed randomly over the sensing region. All the detecting sensors in 

red report their position to the fusion center which, then, computes the weighted centroid for 

target position measurement and feeds it to the tracking filter. If the fusion center computes the 

weighted centroid based on the reported positions as usual, the centroid will be very off from 

the target true position and the track will diverge. To mitigate the adverse noise effect on track, 

we need to develop a sophisticated denoising algorithm. 

3.2 Quick Mitigation Solution 

As a quick mitigation solution [17], we use the sensor position of a highest detecting power for 

target position measurement assuming that the sensor of highest detecting power is closest to 

the target position. This assumption may not be valid for targets with sensing range 

comparable or shorter than the sensor separation. We perform 10 Monte Carlo runs with the 

random noises for various sensing ranges.  

Fig. 3 (a) shows the averaged position track error, <dx>, for each Monte Carlo run with 2% 

of noise distribution and the target sensing range of 30 meters. Track error fluctuates widely 

between 0.8 and 13 meters due to the noise over the 10 runs. Fig. 3 (b) shows averaged track 

error over 10 Monte Carlo runs for 2% and 6% noise distribution and for targets of various 

sensing ranges. The figure shows that the target sensing range should be equal or larger than 

40 meters for accurate tracking with the quick solution.  

 

 

 

 

 

 

 

 

 

 

Fig. 3. (a) Averaged track error for each Monte Carlo run with 2% noises distribution and a target with 

sensing range (SR) 30m and speed V = 20 m/s. (b) Averaged track error over 10 Monte Carlo runs vs. 

SR for 2% and 6% of noise distribution. Target speed is 20 m/s. 
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animal passing with speed 10 m/s and sensing range of 2 meters stays at a sensor less than 0.4 sec 

and  the sound from a target of speed 20 m/s and sensing range of 30 meters stays in the sensor less 

than 3 sec. We also assume that sometimes the noise stays at a sensor longer time than the target 

sound. The denoising process we devised is as follows. 

 

Step 1: The first step is to find the sensors that detect sounds higher than the sensor 

threshold and save the detection information in the following binary form. 
 

          (9) 

 

where the subscript k stands for the time step, Ns is the total number of sensors distributed in 

the field.  

 

                           fi,k =  1  if        (10) 

                                      =  0  otherwise 
 

We save the detection information for three consecutive time steps and find the sensors that 

satisfy  
 

(11) 

 

We, then, save the sensor positions as 

 

  kmk xxxG ),...,,( 21


       (12) 

 

Here, m is the total number of sensors that satisfy Eq. (11) and jx


is j
th
 sensor position . All the 

noises that stay less than 3∆t sec at a sensor will be filtered out but some noises and target 

sound which stay longer than 3∆t sec will survive the filtering. To filter out the residual noises, 

we take the following second step. 
 

Step 2: This step is based on the assumption that the sensors that detect target sound 

aggregate around the target but the sensors that detect the noise are scattered randomly far 

from the target.  

For a j
th
 sensor where j∈{1,2,…, m}, we compute the distance, dj,l, between the j

th
 and a l

th
 

sensors,  
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We, then, count the number of sensors, Lj, that satisfy  

 

                    Lj={ (l=1,2,…, m): dj,l > 3∆s, },    (14) 

 

where Δs is the sensor separation. 

If Lj > m/2, then, the j
th 

sensor is excluded as noise, if not, the j
th
 sensor is included as a target 

detection 
 

Step3: Most of the noises are filtered out through the two steps described above. But if the 
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target sensing range is less than ∆s the centroid computed after step 2 sometimes gives a wrong 

target position measurement by picking up a noise as target sound. To filter the noises further 

for target sensing range shorter than the sensor separation, we save the centroid computed at 

the previous time step, dc,k-1, and compare it with the centroid of current time step, dc,k. If 
 

            |dc,k-1-dc,k| > 3∆s,       (15) 
 

the fusion center discard dc,k and go to next time step, otherwise call KF with dc,k as a target 

position measurement. The psuedo code for the algorithm described above is given as follows. 

 

------------------------------------------------------------------------------------------------ 

Algorithm: Single Target Denoising 

Inputs: Sensor positions sx


 (s = 1,…,Ns),  %Ns ≡ total number of sensors deployed in the 

field. 

1. for  k = 1:itmax %time step 

2.   Target trajectory in time (Eq. (1)), noise model in time (Eq. (7)) 

3.   Call detection model (Eq. (4) and(8)) 

4.   Find the sensors that detect sound ss  and save the detection info in binary form as 

Eq.(10). 

5.   Find the sensors that survive 3Δt sec (satisfy eq. (11)) and save their positions as Eq. (12). 

6.   for  j = 1 : m  % m≡Total number of sensors that satisfy eq. (11). 

7.     L(j)=0 

8.     for  l = 1 : m 

9.       Compute distance between j
th
 and l

th
 sensors using eq. (13): dj,l. 

10.       if dj,l > 3Δs 

11.         L(j)=L(j)+1 

12.       end 

13.    end 

14.    if L(j) ≦ m/2  

15.      Save jx


in Xk  %k is the current time index 

16.    end 

17.  end 

18.  Compute centroid dc,k from Xk 

19.  if Xk-1 = { } go to 1 

20.  if |dc,k-1 – dc,k| > 3Δs go to 1 

21.  else call KF with dc,k as an measurement 

22.  dc,k-1 = dc,k; Xk-1 = Xk 

23. end 

--------------------------------------------------------------------------------------------------- 

3.3.1 Results of the Denoising 

For testing the algorithm, we simulate the following three different noises depending on the 

noise duration at the sensors and the percentage of the sensors that detect the noises. Noise 1 

has 0.1 sec duration at the sensors randomly selected from 6% of the sensors in the field. Noise 

2 is a combination of the noise of 0.1 sec duration at the sensors randomly selected from 5% of 

the sensors and the noise of 0.5 sec duration at another randomly selected from 1% of the 
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sensors. Noise 3 is a combination of the noise of 0.1 sec duration at the randomly selected from 

5% of the sensors and the noise of 1 sec duration at another randomly selected from 1% of the 

sensors. MatLab is used for our simulation and the simulation setting for the sensor network is 

described in Section 2.1.  

Fig. 4 shows how each step filters the noises for a target with sensing range 75 meters. Fig. 

4 (a) is the detecting sensors before filtering. After step1, many of the noises are filtered out as 

shown in Fig. 4 (b). Step 2 filters out remaining noises and the sensors which detect target 

sound remain as shown in Fig. 4 (c). As the target sensing range is much larger than the sensor 

separation, all the noises are filtered out after step2. If the sensing range is comparable or 

shorter than the sensor separation, step3 is needed to filter out remaining noises as will be 

shown in Fig. 6.  

 

0 200 400 600 800 1000 1200 1400
0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200 1400
0

200

400

600

800

1000

1200

1400

0 200 400 600 800 1000 1200 1400
0

200

400

600

800

1000

1200

1400

(a) (b) (c)
 

Fig. 4. Noise filtering by the algorithm. (a) Before noise filtering. (b) After the step 1 filtering. (c) After 

the step 2 filtering. 

 

 

 

 

 

    
 
 
 
 
 
 
 

 
 

 

Fig. 5. Averaged track errors, <dx>, vs. sensing range (SR) for the three different noise durations and 

target speed V = 20 m/s.  

 

For the three different noises mentioned above, we perform 10 Monte Carlo runs for sensing 

range SR = 10, 15, 20, 30, 40, and 50 meters and compute the averaged track position error, 

<dx>. The result is shown in Fig. 5. For the noise duration 0.1 sec, the algorithm works so well 

that <dx> is less than 3 meters for SR=10 m. But as the noise duration increases to 0.5 and 1 

sec, a target with SR=10 m cannot be tracked because the target sound is too low to extract 

from the noises. For a target with SR=15 m, the algorithm filters out the noise and tracks the 

target with averaged track error 4.7 and 6.5 meter for noise duration 0.5 and 1 sec respectively 
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but the track time interval increases up to 11 seconds at step3 of the algorithm.  

Fig. 6 shows the position measurement error defined in Eq. (5) vs. tracking time for targets 

with (a) SR=40 m and (b) 15m and for Noise 3. The data was obtained after passing through 

Step3 of the algorithm. For SR=40 m, the averaged track time interval is 0.65 sec but the 

averaged track time interval increases to 3.3 sec (maximum interval is 11 sec) for SR=15 m. 

The figure shows that the step3 of the algorithm skips the track often when the target sensing 

range of 15 meters is shorter than the sensor separation of 25 meters.  

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. The position measurement error, dc, defined in eq. (5) at each track time for Noise 3. (a) SR=40 

m. (b) SR=15 m. 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

 
Fig. 7. Averaged position track error, <dx>, for each Monte Carlo run for a target with SR=30 m and 

V=20 m/s. 

 

Fig. 7 shows the variation of the averaged track position error, <dx>, for each Monte Carlo 

run for SR=30m and Noise 3. The averaged track position error stays near 1.2 m through the 

10 runs except 2.7 m at 9
th
 run. The result is compared with Fig. 3 (a) which shows wide 

fluctuation of <dx>, 50% of the runs have <dx> > 5 meters.  

As the previous works deal only with Gaussian and stationary noises, it is not possible for us 

to compare their works with our algorithm which deals with non-Gaussian and non-stationary 

noises. For the computational complexity of denoising, we measured the denoising computing 

time for single run to be 1.2·10
-3

 sec. The results shown in this section demonstrate that our 

noise mitigation algorithm works well for the three different noises we modeled. Further tests 

are underway with more diverse noise models and multiple targets to refine our noise 

mitigation algorithm.  
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4. Discussion 

We have studied the target tracking in noisy WSN environments with acoustic sensors. The 

sensors are assumed to have no capability of communicating between sensors, no range 

measurement and no knowledge of the source of the detecting sound. The detecting sound can 

be from a target and/or from environmental noises. As long as the detecting sound is higher 

than the sensor threshold value, the sensor sends the detection information to the fusion center 

regardless of the origin of the sounds for further processing. Thus, the acoustic WSNs are 

prone to be suffered from various environmental noises for tracking target. For successful 

implementation of large scale acoustic WSNs in real world, the mitigation algorithms for these 

environmental noises should be developed.  

The main difference between our work and the previous studies mentioned in the 

introduction is that we have developed a realistic model for target sound propagation and 

detection that accounts for the Doppler effect and studied various environmental effects 

including environmental noise mitigation. These environmental noises will be common in real 

battle field where the acoustic WSN will be deployed. We have proposed an algorithm for the 

environmental noise mitigation and tested the algorithm for various noise models. The 

mitigation algorithm is demonstrated to be effective even for target sound power sometimes 

lower than the sensor threshold value. It is found that noise duration at a sensor is a crucial 

factor that affects the success of the mitigation algorithm. Large scale implementation of 

WSNs in real world often experiences network faults and faces multiple targets crossing each 

other [22] . Detailed study for the environmental effects on multiple target tracking is currently 

under way including noise mitigation. The effect of network faults on target tracking will be 

investigated in the future. 
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