• Title/Summary/Keyword: Acoustic Waves

Search Result 496, Processing Time 0.021 seconds

Development of a Portable Hydrophone Array System (휴대용 수중청음기 배열 시스템의 개발)

  • Kim Bong-Chae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.178-183
    • /
    • 2006
  • A hydrophone away is used to measure spatial distribution in underwater sound field and to detect incoming direction of sound waves in the ocean. It is not usually convenient to handle the hydrophone away because of its extensive scale. And it is not easy to purchase the hydrophone away because of expensive price. A hydrophone logger combined with a hydrophone and data logger was developed to consist conveniently of a hydrophone away for use to receive underwater sound waves. And a hydrophone array system with the hydrophone loggers was developed. Main configurations of the hydrophone 1o99er and the hydrophone array system are introduced in this paper. Also we present some measurement results by the hydrophone logger in a water tank and measurement examples on ambient noise in the sea by the hydrophone away system. And we discuss some advantages in use of the hydrophone array system.

Sound Insulation Strategy for the Tunnel Noise in a High Speed Train (고속철도차량의 터널 소음을 위한 차음 전략)

  • Kim, Seock-Hyun;Lee, Ho-Jin;Kim, Jung-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.315-322
    • /
    • 2012
  • In a tunnel, interior noise of a high speed train increases by 5dB~7dB. The reason is that the sound intensity of the acoustic field in the tunnel significantly increases by the reflected waves occurred in the closed space. Especially, the incident acoustic power largely increases on the outside of the compartment side panel and large transmission of noise is available through the side panel and the glass window. In this paper, the sound insulation strategy in the tunnel is proposed for the next generation high speed train under development. Specimens of the aluminum extruded panels, layered panels and double glazed window are manufactured and intensity transmission loss is measured according to ASTM E2249-02. Based on the measured data, problems in the sound insulation performance are diagnosed and the sound insulation strategy is reviewed on each panel and layered structures.

The Effects of Intralaryngeal Needle Technique in Intracordal Cyst (성대내낭종에서 성대내바늘기법의 효과)

  • Ahn, Cheol Min
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.27 no.1
    • /
    • pp.40-44
    • /
    • 2016
  • Background and Objectives : Surgery is considered the primary treatment for intracordal cyst. However, patients who had undergone surgery are still subject to recurrence and continued voice changes. Intracordal cysts naturally disappear in some patient population. Cyst does not always recur in patients who had received partial surgical removal, too. Contradicting results raises a question whether complete surgical removal of intracordal cyst is necessary and demonstrate need for better treatment. Herein, the author proposes novel surgical method technique intralaryngeal needle technique (INT), a technique using surgical needle for not only injection but also for aspiration and excision of cyst. This study aims to examine the potential of intralaryngeal needle technique in treating intracordal cysts. Materials and Methods : Surgical procedures were done on in-patients diagnosed with intracordal cyst. 23 patients received follow-up screening after the surgery for one year. Patients' subjective satisfaction levels, acoustic measures, aerodynamic measures, laryngeal stroboscopic results were compared before and after the treatment. Results : Overall patients were satisfied with novel surgical excision method. In terms of aerodynamic measures, maximum phonation time, mean air flow rate improved after the surgery. In terms of acoustic measures, Jitter, Shimmer, NHR, and voice pitch changes after the treatment showed statistically significant differences. Laryngeal stroboscopy results showed significant decreases in cyst sizes. Post-surgery patients had improved mucosal waves and amplitudes values. Conclusion : The results show the validity of intralaryngeal needle technique in reducing intracordal cyst size by excision, aspiration, and injection. The author believes this novel technique can be used as an alternative surgical method for intracordal cysts.

  • PDF

Detection of Cracks in feeder Pipes of Pressurized Heavy Water Reactor Using an EMAT Torsional Guided Wave (EMAT의 유도초음파 비틀림 모드를 이용한 가압중수로 피더관의 균열 검출)

  • Cheong, Yong-Moo;Kim, Sang-Soo;Lee, Dong-Hoon;Jung, Hyun-Kyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.2
    • /
    • pp.136-141
    • /
    • 2004
  • A torsional guided wave mode was applied to detect a crack in a pipe. An array of electromagnetic acoustic transduce. (EMAT that can generate and receive torsional guided ultrasound with the frequency of 200kHz was designed and fabricated for testing a pipe of 2.5 inch diameter Artificial notches with various depths were fabricated in a bent feeder pipe mock-up and the detectability was examined from the distance of 2m of the specimen. The axial notches with the depth of 5% of wall thickness were successfully detected by a torsional mode (T(0,1)) generated by the EMAT However, it was found that the depth of defects was not related to the signal amplitude.

Impact and Damage Detection Method Utilizing L-Shaped Piezoelectric Sensor Array (L-형상 압전체 센서 배열을 이용한 충격 및 손상 탐지 기법 개발)

  • Jung, Hwee-Kwon;Lee, Myung-Jun;Park, Gyuhae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.5
    • /
    • pp.369-376
    • /
    • 2014
  • This paper presents a method that integrates passive and active-sensing techniques for the structural health monitoring of plate-like structures. Three piezoelectric transducers are deployed in a L-shape to detect and locate an impact event by measuring and processing the acoustic emission data. The same sensor arrays are used to estimate the subsequent structural damage using guided waves. Because this method does not require a prior knowledge of the structural parameters, such as the wave velocity profile in various directions, accurate results could be achieved even on anisotropic or curved plates. A series of experiments was performed on plates, including a spar-wing structure, to demonstrate the capability of the proposed method. The performance was also compared to that of traditional approaches and the superior capability of the proposed method was experimentally demonstrated.

Acoustothermal Heating of Polydimethylsiloxane Microfluidic Systems and its Applications (Polydimethylsiloxane 기반 미세유체시스템의 음향열적 가열 및 응용)

  • Sung, Hyung Jin;Ha, Byunghang;Park, Jinsoo;Destgeer, Ghulam;Jung, Jin Ho
    • Journal of the Korean Society of Visualization
    • /
    • v.14 no.1
    • /
    • pp.57-61
    • /
    • 2016
  • We report a finding of fast(exceeding 2,000 K/s) heating of polydimethylsiloxane(PDMS), one of the most commonly-used microchannel materials, under cyclic loadings at high(~MHz) frequencies. A microheater was created based on the finding. The heating mechanism utilized vibration damping of sound waves, which were generated and precisely manipulated using a conventional surface acoustic wave(SAW) microfluidic system, in PDMS. The penetration depths were measured to range from $210{\mu}m$ to $1290{\mu}m$, enough to cover most microchannel heights in microfluidic systems. The energy conversion efficiency was SAW frequency-dependent and measured to be the highest at around 30 MHz. Independent actuation of each interdigital transducer(IDT) enabled independent manipulation of SAWs, permitting spatiotemporal control of temperature on the microchip. All the advantages of this microheater facilitated a two-step continuous flow polymerase chain reaction(CFPCR) to achieve the billion-fold amplification of a 134 bp DNA amplicon in less than 3 min. In addition, a technique was developed for establishing dynamic free-form temperature gradients(TGs) in PDMS as well as in gases in contact with the PDMS.

Acoustic Characteristics of Wedge-shaped Anechoic Tiles with Different Wedge-apex Angles (꼭지각이 다른 쐐기형 무반향 타일의 음향특성)

  • 김성기;이강일;윤석왕
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.5-11
    • /
    • 2001
  • Acoustic characteristics of the wedge-shaped anechoic tiles, used as absorbing lining materials for an anechoic water tank, were investigated for different wedge-apex angles. The anechoic tile base has the dimensions of 400mm x 385mm x 15.5mm. In order to investigate anechoic effect, the wedge-apex angles 30° and 60° were selected by using a ray-tracing method. The reflection loss of the anechoic tiles with and without wedges were experimentally studied at normal incident sound waves in water. In this experiment, the reflection loss of wedge-shaped anechoic tiles with the optimum wedge-apex angle 30° is larger than one with the angle 60° and one without wedges. The experimental results show that the wedge-shaped anechoic tiles with the wedge-apex angle 30°, optimized by using ray-tracing method, turn out better absorbing lining materials of an anechoic water tank.

  • PDF

Determination of Impact Source Location Using a Single Transducer and Time Reversal Technique (단일센서와 시간역전법을 이용한 판에서의 충격위치 결정에 관한 연구)

  • Jeong, Hyun-Jo;Cho, Sung-Jong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.1
    • /
    • pp.47-55
    • /
    • 2012
  • A structural health monitoring technique for locating impact position in a plate structure is presented in this paper. The method employs a single sensor and spatial focusing of time reversal (TR) acoustics. We first examine the TR focusing effect at the impact position and its surroundings through simulation and experiment. The imaging results of impact points show that the impact source location can be accurately estimated in any position of the plate. Compared to existing techniques for locating impact or acoustic emission source, the proposed method has the benefits of using a single sensor and not requiring material properties and geometry of structures. Furthermore, it does not depend on a particular mode of dispersive Lamb waves that is frequently used in other ultrasonic testings of plate-like structures.

A Study on AE Signal Analysis of Composite Materials Using Matrix Piezo Electric Sensor (매트릭스형 피에조센서를 이용한 복합재료 AE신호 분석에 관한 연구)

  • Yu, Yeun-Ho;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.1
    • /
    • pp.1-7
    • /
    • 2007
  • As fiber reinforced composite materials are widely used in aircraft, space structures and robot arms, the study on non-destructive testing methods has become an important research area for improving their reliability and safety. AE (acoustic emission) can evaluate the defects by detecting the emitting strain energy when elastic waves are generated by the initiation and growth of crack, plastic deformation, fiber breakage, matrix cleavage, or delamination. In the paper, AE signals generated under uniaxial tension were measured and analyzed using the $8{\times}8$ matrix piezo electric sensor. The electronic circuit to control the transmitting distance of AE signals was designed and constructed. The optical data storage system was also designed to store the AE signal of 64channels using LED (light emitting diode) elements. From the tests, it was shown that the source location and propagation path of AE signals in composite materials could be detected effectively by the $8{\times}8$ matrix piezo electric sensor.

Introduction to Thermoacoustic Models for Combustion Instability Prediction Using Flame Transfer Function (화염 전달 함수를 이용한 열음향 연소 불안정 해석 모델 소개)

  • Kim, Dae-Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.98-106
    • /
    • 2011
  • This paper reviews the state-of-the-art thermoacoustic(TA) modeling techniques and research trend to predict major parameters determining combustion instabilities in lean premixed gas turbine combustors. Linear TA modeling results give us an information on eigenfrequencies and initial growth rate of the instabilities. For the prediction, linear relation equation between acoustic waves and heat release oscillations should be derived in the determined system. Key information for this analysis is to determine the heat release fluctuations in the combustor, which is typically obtained by using n-${\tau}$ function from flame transfer function measurements and/or predictions. Great advancement in the linear TA modeling has been made over a couple of decades, and some successful prediction results have been reported in actual gas turbine combustors. However nonlinear TA model developments which are required to analyze nonlinear system behaviors such as limit cycle saturation and transition phenomena are still limited in a very simple system. In order to fully understand combustion instabilities in a complicated real system, nonlinear flame dynamics and acoustic wave interaction with nonlinear system boundary conditions should be explained from the nonlinear TA model developments.