• Title/Summary/Keyword: Acoustic Transmission loss

Search Result 234, Processing Time 0.025 seconds

Physical Characteristics of Internal Waves and the Effect of Short Depression Internal Wave on Acoustic Transmission in the East Sea (동해 내부파의 물리적 특성과 단주기 오목형 내부파가 음파전달에 미치는 영향)

  • Han, Bong-Wan;Lim, Se-Han;Park, Kyeong-Ju;Kim, Seong-Il
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.37-43
    • /
    • 2009
  • Fluctuations in the ocean are closely related with the underwater acoustic propagation. Internal waves are generated by fluctuation of isopycnal layer in the upper part of the stratified ocean, which are propagated from offshore to coastal area. Physical characteristics of the internal waves existed in the East Sea were derived from the five field experimental data and the ocean monitoring buoy nearshore the mid-east coast of Korea. The dominant periods are appeared in the near-inertial period about $17{\sim}20hours$ and the short period about a few minutes. The wavelengths of them are $10{\sim}50km$ and $300{\sim}1000m$, and the phase speeds are $20{\sim}100cm/s$ and $30{\sim}70cm/s$, respectively The maximum amplitudes are about $20{\sim}25m$. Under the environment of short depression internal wave propagation, the variations of transmission loss field were investigated using an range-dependent acoustic transmission loss model(RAM). The result shows that the large irregular variations of transmission loss caused by progressing the internal wave from offshore toward coast.

One-dimensional Topology Optimization for Transmission Loss Maximization of Multi-layered Acoustic Foams (전달손실 최대화를 위한 공기-흡음재 배열 최적설계)

  • Lee, Joong-Seok;Kim, Yoon-Young;Kim, Jung-Soo;Kang, Yeon-June;Kim, Eun-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.938-941
    • /
    • 2006
  • We present a new design method of one-dimensional multi-layered acoustic foams for transmission loss maximization by topology optimization. Multi-layered acoustic foam sequences consisting of acoustic air layers and poroelastic material layers are designed for target frequency values. For successful topology optimization design of multi-layered acoustic foams, the material interpolation concept of topology optimization is adopted. In doing so, an acoustic air layer is modeled as a limiting poroelastic material layer; acoustic air and poroelastic material are handled by a single set of governing equations based on Biot's theory. For efficient analysis of a specific multi-layered foam appearing during optimization, we do not solve the differential equations directly, but we use an efficient transfer matrix approach which can be derived from Biot's theory. Through some numerical case studies, the proposed design method for finding optimal multi-layer sequencing is validated.

  • PDF

Transmission Loss Prediction of KHST's Wall Section (KHST 차량 벽면의 투과손실값 예측)

  • Kim, Kwan-Ju;Yoon, Tae-Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.104-109
    • /
    • 2002
  • The purpose of this study is to calculate transmission loss of KHST passenger vehicle's wall section accurately Typical transmission loss measurement of wall in the laboratory condition was carried out in advance, which is easier than KHST. Transmission loss results were compared with those by statistical acoustic method. Transmission loss values of KHST calculated by experimental method are compared with those from closed form solution.

  • PDF

On the Transmission Loss Measurement System (전달손실계수 측정 시스템에 대하여)

  • Ryu, Yun-Seon;Kim, Yoon-Seok;Callec, Philippe
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.166-171
    • /
    • 2002
  • The transmission loss coefficient is very important acoustic property in parallel with absorption and acoustic impedance categorizing the acoustical materials, which can control the acoustical problems. At the same time, the transmission loss coefficient is a key parameter to choose the optimum material for the analysis of acoustical characteristics of material using SEA(Statistical Energy Analysis). In this paper, the transmission loss coefficient measurement system using 4-microphone impedance tube is proposed, based on the idea calculating the full transfer matrix of the acoustical sample to test. The theoretical background and measurement system are introduced, and finally the measurement results are verified.

  • PDF

On the Transmission Loss Measurement System (전달손실계수 측정시스템에 대하여)

  • Yunseon RYU;Yoon-Seok KIM;Philippe CALLEC
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.323.1-323
    • /
    • 2002
  • The transmission loss coefficient is very important acoustic property in parallel with absorption and acoustic impedance categorizing the acoustical materials, which can control the acoustical problems. At the same time, the transmission loss coefficient is a key parameter to choose the optimum material for the analysis of acoustical characteristics of material using SEA(Statistical Energy Analysis). In this paper, the transmission loss coefficient measurement system usiong 4-microphone impedance tube is proposed, based on the idea calculating the full transger matrix of the acoustical sample to test. The theoretical backgroung and measurement system are introduced, and finally the measurement results are verified.

  • PDF

On the Transmission Loss Measurement System(Part II) (전달손실계수 측정 시스템에 대하여(Part II))

  • 김윤석;류윤선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.658-661
    • /
    • 2003
  • The transmission loss coefficient is very important acoustic property in parallel with absorption and acoustic impedance categorizing the acoustical materials, which can control the acoustical problems. At the same time, the transmission loss coefficient is a key parameter to choose the optimum material for the analysis of acoustical characteristics of material using SEA(Statistical Energy Analysis). In this paper, the transmission loss coefficient measurement system using 4-microphone impedance tube is proposed, based on the idea calculating the full transfer matrix of the acoustical sample to test. The theoretical background and measurement system are introduced, and finally the measurement results are verified.

  • PDF

Finite Element analysis of Acoustic Behavior of Absorbent Materials with experimental Verification (유한요소법에 의한 흡음재 음향특성 연구 및 검증)

  • 정환익;김관주;박진규;김상헌
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.874-878
    • /
    • 2003
  • Acoustic materials are used for the purpose of absorbing noise and reducing transmission of sound into the receiving room. The purpose of this research is to predict the performance of absorbent materials with respect to absorbing behavior and transmission loss as possible as accurately. The performance of the absorbent materials are carried out systematically as follows: The Biot parameter are measured, first. Then using above parameters as input, LMS's SYSNOISE and VIOLINS programs are used to predict absorption coefficient and transmission loss values, which magnitudes are compared with experimental results. As an sample acoustic material, SK SKY VIVA and PET are selected.

  • PDF

Experimental Study on Acoustic Absorption and Transmission Characteristics of Aluminium and Sandwich Composite Structure (금속 및 샌드위치 복합재 유도탄 구조체의 흡음 및 차음 특성에 관한 실험적 연구)

  • Lee, Yoon-kyu;Lee, Dae-oen;Jin, Byung-Dae;Lee, Dong-min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.288-294
    • /
    • 2018
  • Recently, as the speed and performance of the launcher and the missile have been improved, it is necessary to consider the acoustic load of launching and flight in initial design step. In this paper, an experimental study on acoustic absorption and transmission characteristics of aluminium vs. sandwich composite structures were conducted. The overall noise reduction was evaluated by performing an acoustic test in the reverberation room, and the acoustic absorption and transmission loss of the structures were analyzed by conducting the sound absorption test inside the structure.

Effects of Fluid Velocity on Acoustic Transmission Loss of Simple Expansion Chamber (유동속도가 단순확장관 음향투과손실에 미치는 영향 해석)

  • Kwon, Jin;Jeong, Weui-Bong;Hong, Chin-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.994-1002
    • /
    • 2012
  • Acoustic power transmission loss(TL) is an important performance of the muffler system. TL will be affected by the velocity of the fluid in duct since acoustic pressure varies according to the fluid velocity. In this paper, two kinds of fluid model, potential flow and turbulent flow, for the fluid flowing in simple expansion chamber are considered. The effects of their two fluid models in acoustic TL are investigated for the straight and L-shaped simple expansion chamber. In higher frequency range, the characteristics of TL of the two fluid models show different results. The variation of TL according to the fluid velocity is shown more distinctly when turbulence model is used. Turbulent flow model should be used to obtain better estimation of acoustic TL in higher frequency range.

The Acoustic Performance Measurement of Silencers in Reflective Field (반사파가 존재하는 음향장에서의 소음기의 음향성능 측정)

  • Lee, Seong-Hyun;Ih, Jeong-Guon;Choi, Won-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.625-628
    • /
    • 2005
  • Silencers are extensively used for reducing noise in an exhaust system of internal combustion Engine and fluid machineries. The prediction and measurement of the transmission loss as the acoustic performance of silencers are important in early design stage. In the measurement of transmission loss, the semi-anechoic terminations are general used for reducing unwanted effects by reflecting wave. However it is very hard to remove reflecting wave perfectly. So the research about the error made by reflecting wave is important. The analysis about errors made by reflections and modification techniques are proposed. For an application example, the diesel particulate filter (DPF) is chosen. The transmission loss of DPF is measured with and without considerations of reflecting wave.

  • PDF