• Title/Summary/Keyword: Acoustic Test

Search Result 1,168, Processing Time 0.04 seconds

Stress Evaluation by the Measurement of Acoustoelastic Effect Using a Line-Foucus Acoustic Microscope (선 집속 초음파 현미경을 이용한 음탄성효과 측정에 의한 응력 평가)

  • Kim, J.O.;Lee, Y.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.10
    • /
    • pp.119-126
    • /
    • 1997
  • The relationship between the applied stresses and the change of elastic wave velocity has been established based on the acoustoelasticity theory. The non-uniform stress field in a loaded specimen has been evaluated from the surface acoustic wave velocity measured by the line-focus acoustic microscopy with the acoustoelastic constants obtained form a calibration test. The evaluated stresses are in good agreement with the results calculated by finite element method.

  • PDF

An overview of acoustic and vibration research activities for the structural development of Korean space launchers (위성 발사체 구조 개발을 위한 음향/진동 연구)

  • Park, Soon-Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.342-350
    • /
    • 2020
  • Acoustic and vibration research activities for the structural development of Korean space launch vehicles are introduced in this paper. Various dynamic loads exerted on a launch vehicle during its operation are summarized. The acoustical design method of payload fairings which protect satellites from harsh launch environment was reviewed. Several acoustic research activities were performed to enhance the analytical prediction ability during the development period of the Naro and the Nuri launcher. Specifically, the following research activities are reviewed: a test and vibro-acoustic analysis of composite cylinders whose layup properties are varied, a research on low-frequency acoustic load reduction by an acoustic resonator array and an acoustic test on the cylinder part of the Naro payload fairing. A vibro-acoustic analysis result for the Nuri launcher was introduced and predicted acoustic and vibration levels and measured ones are shown to be in a good agreement.

Analysis and Test of Dynamic Responses of Rocket Payload Section Induced by Acoustic Excitation (음향 가진에 의한 로켓 탑재부의 동적 응답 해석 및 시험)

  • Park, S.H.;Jeong, H.K.;Seo, S.H.;Jang, Y.S.;Yi, Y.M.;Cho, K.R.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.717-720
    • /
    • 2005
  • Acoustic loads generated by a rocket propulsion system cause severe random vibrations on payloads. In developing a new launch vehicle, a random vibration level must be specified before the detailed design of payloads or electronic equipments. This paper deals with prediction procedures of a random vibration level on payload section of KSLV-I. The prediction is based on statistical energy analysis. In order to verify the prediction methodology, test and analysis on a sub-scale payload section are performed. The predicted results subject to very high level of acoustic loads show a good agreement with the test results performed in the high intensity acoustic chamber. The predicted random vibration level on payload section of KSLV-I is also presented in this paper.

  • PDF

Study on the Modal Test for a Turbocharger Wheel Using Vibro-acoustic Responses (진동 방사음을 이용한 터보차져 휠 동특성 시험에 대한 고찰)

  • Lee, Hyeong-Ill;Lee, Dug-Young;Park, Ho-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.29-37
    • /
    • 2011
  • The modal characteristics of a compressor wheel of an automotive turbocharger have been investigated using an experimental method based on an acoustic frequency response function, p/f(${\omega}$), where p is sound pressure radiated from a structure, and f is impact force. First, a well-defined annular disc with narrow radial slots was examined to check whether the vibro-acoustic test could precisely determine natural quencies and vibration modes of structures showing that the vibro-acoustic test proposed in this paper was comparable to the conventional modal test with an accelerometer and the numerical analysis. The conventional method has been found to be inappropriate for compressor wheel because of additional mass due to the accelerometer and additional damping from the accelerometer cable alter the dynamic responses of the wheel blades. odal characteristics of the wheel have been defined using vibro-acoustic test and verified with the results from another conventional method using a laser vibrometer. Natural quencies and mode shapes of a turbocharger wheel, which can't be precisely obtained with onventional method, could be defined accurately without the additional effects from sensor and cable. Proposed method can be applied to small structures where conventional sensors and cables could generate troubles.

Step-wised Out-test Mechanism for Underwater Acoustic Networks (수중 음파 통신 네트워크를 위한 Step-wised Out-test 메커니즘)

  • Ibragimov, Mukhridinkhon;Yun, Nam-Yeol;Shin, Soo-Young;Namgung, Jung-Il;Kim, Changhwa;Park, Soo-Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.106-114
    • /
    • 2015
  • Despite a series of various developments in underwater acoustic sensor networks, there are still occasions of loss of connection over the network. Because sufficient amounts of drawbacks causing disconnections posed particularly in the middle of connection over the network emerge in the ocean environment, there is a need of new testing mechanism for underwater acoustic networks. In this paper, we proposed to investigate the most vital parts of the network deployment whether they function well in order, without any failure so as to identify where exactly communication process problems and failures are. We introduce step-wised out-test mechanism for UWASNS and accomplished the mechanism by implementing experiments and rigorously checked all the underwater devices utilizing out-test function. Experimental results and out-test function are evinced by implementing, in order to explain our system and conclude with possible future improvements.

State Monitoring of Compressor using AE Signal in Life Test (압축기의 수명실험에서의 AE 신호를 이용한 상태감시)

  • 정지홍;강명창;노태영;이감규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.56-60
    • /
    • 1997
  • The compressor is one of important elements in refrigeration cycle and play an important role of refrigeration efficiency and quality. This paper analyzes slides in rotary compressors for room air conditioners, monitoring using Acoustic Emission(AE) technique. Reliability of rotary compressors which are factory-tested has been evaluated through visual inspection on taking them apart after long term test, which is life test. This paper describes methods for acquisition and processing of Acoustic Emission(AE) raw signal to monitor state of rotary compressor in Life Test.

  • PDF

Radiation Characteristics of Heavy-weight Floor Impact Sounds in a Standard Test Building (표준실험동에서 중량충격음의 방사 특성)

  • Yoo, Seung-Yup;Jeong, Yong;Jeon, Jin-Yong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.381-384
    • /
    • 2005
  • The purpose of this study is to develop a prediction model for evaluating heavy-weight floor impact sounds in a test building. Three rooms in the test building (slab thickness In and 240mm), which consist of frame concrete structures were tested and modeled. First, the SPL distribution in the receiving room was analyzed by measuring SPL at 90 positions using a bang machine. Then, a vibration model using finite element method is proposed considering the material properties and boundary conditions. In addition, the result of transient analysis was compared with field measurements using a standard heavy-weight impact source. Through a vibro-acoustic simulation program, an acoustic model evaluating the building elements (reflected wall, nor, window and door) was proposed. Finally, validation of the prediction model was conducted by vibro-acoustic analysis with field measurements of noise radiation characteristics in receiving rooms.

  • PDF

Experiments of Combustion Vibration in the Pilot Furnace for Fossil Power Plant under Combustion Test (I) (화력 발전용 시험연소로의 연소시험 중의 연소진동 실험(I))

  • Ju, Young-Ho;Kim, Cheol-Hong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.341-344
    • /
    • 2004
  • This paper presents results of test for combustion vibration in the pilot furnace for fossil power plant under combustion test. We measured static pressure variation in the pilot furnace together with air and fuel flow. From test results, it shows that vibration magnitude is affected by air and fuel flow. Also, a finite element analysis using a commercial S/W is performed to calculate acoustic mode of the pilot furnace. These results show that dominant frequency occurred is related to acoustic natural frequency of furnace. After this, it needs to be studied the relation between dominant frequency of combustion vibration and air flow rate.

  • PDF

A Study on Durability Verification of Seabed-Mounted Acoustic Sensor System (해저매설형 음향센서 시스템의 내구성 검증 방안에 대한 연구)

  • Shin, Jeung Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.3
    • /
    • pp.147-153
    • /
    • 2017
  • In this paper, a test is performed to verify the mechanical durability of acoustic sensor system mounted in seabed given test specification. High system durability is required for acoustic sensor system which is costly for installation process, and is affected with various tensional loads by installation equipments. So, it is necessary to verify the system durability including its performance or lifetime in mounted environments. The list of specified tests is mainly based on UJ QTS 200 and the system mostly satisfies the test specification for electrical characteristics.

Interfacial Evaluation of Flax and Hemp Fibers/Polypropylene Composites Using Micromechanical Test and Acoustic Emission (Micromechanical 시험법과 음향방출을 이용한 Flax 와 Hemp섬유 강화된 Polypropylene 복합재료의 계면 물성 평가)

  • Son, Tran-Quang;Hwang, Byung-Sun;Park, Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.42-45
    • /
    • 2005
  • Interfacial evaluation of various combinations of both Flax and Hemp fibers/polypropylene were performed by using micromechanical test and nondestructive acoustic emission (AE). It can be because interfacial adhesion between the natural fiber surface and matrix plays an important role in controlling the overall mechanical properties of polymer composite materials by transferring the stress from the matrix to the fiber. It is necessary to characterize the interphase and the level of adhesion to understand the performance of the composites properly. Microfailure mechanism of single Flax fiber bundles were investigated using the combination of single fiber tensile test and nondestructive acoustic emission. Microfailure modes of the different natural fiber/polypropylene systems were observed using optical microscope and determined indirectly by AE and their FFT analysis.

  • PDF