• 제목/요약/키워드: Acoustic Space

검색결과 484건 처리시간 0.021초

문화재로 지정된 SH고등학교 강당의 음향리노베이션설계 및 평가 (Acoustic design for the renovation of a cultural heritage building, SH high school auditorium)

  • 정대업;오예닮;이효진
    • 한국음향학회지
    • /
    • 제38권3호
    • /
    • pp.266-274
    • /
    • 2019
  • 국내 문화예술공간에 대한 통계조사에서 나타나듯이, 국내의 많은 공연시설들은 노후화에 따른 크고 작은 규모의 개보수가 필요한 상태이다. 그러나 이와 같은 기존공간의 음향개보수과정에서 참고가 될만한 사례연구가 많지 않은 실정이다. 본 연구는 문화재로써 많은 제약조건을 갖는 SH고등학교 강당을 대상으로 초기 음향검토에서부터 사용자의 요구조건 및 문제점들을 고려한 대안의 수립 그리고 대안들의 적용에 따른 음향성능평가과정 및 그 결과를 분석함으로써 음향리노베이션 설계의 참고자료를 제공하고자 하였다. 개선방안들의 적용결과, 실의 잔향특성이 개선되었으며 언어명료도 및 음악명료도가 개선되었음을 확인하였다. 그러나 라우드니스는 목표한 수준에 미치지 못하였으며 이는 천장에 적용된 슬랫형 구조가 강한 반사음을 제공하지 못하기 때문인 것으로 분석되었다.

라디오시티법을 이용한 실내 음향장 해석 연구 (A Study on Room Acoustic Field Analysis using Radiosity Method)

  • 김국현
    • 대한조선학회논문집
    • /
    • 제55권5호
    • /
    • pp.394-400
    • /
    • 2018
  • Various numerical methods have been adopted for indoor noise assessments of ship plant. Acoustical radiosity method is one of the high frequency approaches for acoustic field analysis, which assumes diffuse reflections by boundaries so that it could be efficiently applied to the acoustically diffused indoor space noise analysis. In this study, an acoustic field analysis program has been developed based on radiosity method, which could apply for acoustically large enclosures such as ship's indoor space. For this purpose, the procedure of the acoustical radiosity method has been summarized and implemented to an acoustic field analysis program using MATLAB. Numerical example for a rectangular indoor space has investigated validity of the implemented program. Steady state sound pressure levels calculated for a continuous acoustic source signal have shown good agreement with those by other solutions such as an analytic solution and a ray tracing method. Instantaneous sound pressure levels calculated for an impulsive acoustic signal have provided the clues of direct/reflected acoustic field and reverberation time.

THE EFFECT OF DUST PARTICLES ON ION ACOUSTIC SOLITARY WAVES IN A DUSTY PLASMA

  • Choi, Cheong-Rim;Lee, Dae-Young;Kim, Yong-Gi
    • Journal of Astronomy and Space Sciences
    • /
    • 제21권3호
    • /
    • pp.201-208
    • /
    • 2004
  • In this paper we have examined the effect of dust charge density on nonlinear ion acoustic solitary wave which propagates obliquely with respect to the external magnetic field in a dusty plasma. For the dusty charge density below a critical value, the Sagdeev potential $\Psi1(n)$ has a singular point in the region n < 1, where n is the ion number density divided by its equilibrium number density. If there exists a dust charge density over the critical value, the Sagdeev potential becomes a finite function in the region n < 1, which means that there may exist the rarefactive ion acoustic solitary wave. By expanding the Sagdeev potential in the small amplitude limit up to on4 near n=1, we find the solution of ion acoustic solitary wave. Therefore we suggest that the dust charge density plays an important role in generating the rarefactive solitary wave.

한국어 단모음 8개에 대한 음향분석 - F1/F2 모음공간에서의 음향변수를 중심으로 - (An Acoustic Analysis on the Korean 8 Monophthongs - With Respect to the Acoustic Variables on the F1/F2 Vowel Space -)

  • 성철재
    • 한국음향학회지
    • /
    • 제23권6호
    • /
    • pp.454-461
    • /
    • 2004
  • This paper describes the acoustic characteristics of 8 Korean monophthongs. Two acoustic variables were newly manipulated the distance between Fl and F2 (Δ[F2-Fl]). which might be of help for the judgement of the vowel backness. and Euclidian distance between two vowels. [에] & [애] were observed to be merged in both male vowel space and the female's. respectively. The merger of [우] & [오], on the other hand, was only seen in the female space. In case of Fl, which concerns the vowel height. the scope of the females' was 1.36 times longer than that of the males' Regarding F2, which is related to the vowel backness. the females used a space 1.29 times longer than the males. The observation of Euclidian distance between the basic 3 vowels (이. 아. 우) showed that the females have longer distance than the males: [이-아] 1.25 times, [아-우] 1.45 times, and [이-우] 1.35 times. respectively.

흡음재 최적배치를 이용한 임의 공간의 음향제어에 관한 연구 (Acoustic Control of Optional Space Using Optimum Location of Absorbing Material)

  • 김동영;홍도관;안찬우
    • 한국소음진동공학회논문집
    • /
    • 제14권10호
    • /
    • pp.1048-1054
    • /
    • 2004
  • The Passive acoustic control is used in various fields, such as structures, automobiles, aircraft and so on. It is used in variety of acoustic field with the absorbing material, as one of the methods which can control the acoustic in optional space. In that case of passive control using this absorption material, it would be important to maximize the control performance of material property, numbers, geometry shape and the attached location of boundary area of the absorbing material. But realistically these variables, specially material Property, have no broad choice. Therefore, the position of absorbing material is the most important variable. In this study, we use the optimization method to minimize acoustic energy of optional space in the interest frequency attaching some absorbing materials to the boundary area. For analysis and optimization, this study uses the FEA and the conjugate gradient method. This optimization process is very efficient and useful in the passive acoustic control.

파킨슨병 환자의 음향 모음 공간 파라미터 비교 (A Comparison of Parameters of Acoustic Vowel Space in Patients with Parkinson's Disease)

  • 강영애;윤규철;이학승;성철재
    • 말소리와 음성과학
    • /
    • 제2권4호
    • /
    • pp.185-192
    • /
    • 2010
  • The acoustic vowel space has been used as an acoustic parameter in dysarthric speech. The aim of this work was to examine mathematical formulae for acoustic vowel space and to apply these to Korean speakers with idiopathic Parkinson's disease(IPD). Five acoustic parameters were chosen from earlier works and one new parameter was proposed, the pentagonal vowel space. The six parameters included triangular vowel space (3 area), irregular quadrilateral vowel space (4 area), irregular pentagonal vowel space (5 area), vowel articulatory index (VAI), formant centralization ratio (FCR) and F2i/F1u ratio (F2 ratio). An experimental group of 32 IPD patients(male:female=16:16) and a control group of twenty healthy people (male:female=8:12) participated in the study and repeated vowels (/a-i-u-e-o/) three times. A correlation analysis was performed among the six parameters, 2-way ANOVA was done with gender and groups as independent factors, and an independent sample t-test was conducted between the male and the female group as post hoc comparison. All parameters were highly correlated with each other and only the FCR showed a high negative correlation with the others. The results of ANOVA showed a significant difference in F2 ratio, 3 area, 4 area and 5 area between gender and in 4 area and 5 area between groups. For the male members of the two groups, significant statistical differences were found in all parameters whereas no such differences were found for the female members. These findings indicated that the vowel space of the female group was wider than the vowel space of the male group. These differences may have been caused by gender-specific speech styles rather than by patho-physiological mechanisms. We also claim that the pentagonal vowel space is better than the other vowel spaces at representing the disordered speech in natural speech situations.

  • PDF

LQR 제어기를 이용한 밀폐음장의 능동소음제어 (fictive Noise Control of Enclosed Sound Field Using LQR Controller)

  • 유우열;김우영;황원걸;이유엽
    • 한국소음진동공학회논문집
    • /
    • 제12권1호
    • /
    • pp.12-20
    • /
    • 2002
  • To control the noise of an enclosed sound field, we built a state space model using the acoustic modal parameter description. Using the state space model, we can investigate the controllability and observability, and find an appropriate position of control speaker and microphone to control sound field of the enclosed space. We implemented LQR(linear quadratic regulator) controller and reduced order observer to reduce the first acoustic mode. Experiments showed satisfactory results of 4∼10 dB reduction of magnitude of the first acoustic mode, and support the feasibility of the proposed scheme to lightly damped acoustic field.

음향시뮬레이션을 이용한 대형 실내체육관의 건축음향성능 개선에 관한 연구 (Architectural Acoustic Performance Renovation of the Large Gymnasium using Acoustic Simulation)

  • 윤재현;김재수
    • 한국주거학회논문집
    • /
    • 제19권4호
    • /
    • pp.41-48
    • /
    • 2008
  • In this study, an analysis is carried out on the acoustic design for an indoor gymnasium scheduled to be built at Buan County, Chonbuk Province. By way of background, the study examines the case of a large-scale indoor gymnasium that has been constructed in the local area of Hangan-myeon. There are many examples whereby this gymnasium could be used not only as a sporting facility for the residents, but also as a multipurpose space for public performances such as leisure activities, lectures, assembling activities, theatre and concerts etc. In order to maximize the functional utilization of such an indoor gymnasium, it is important to simultaneously verify the acoustic capabilities of the space in terms of Definition of both Voice and Music. However, as a large-scaled athletic facility, the building was designed with a high ceiling-height to accommodate its functional characteristics. The space forms a Sound Focus whereby the sound is concentrated at a specific part, and because the vibration of sound is too loud due to its broad volume, acoustic defects arise such as a significant number of Echoes. Using this gymnasium as a precedent, this study proposes an acoustic design based on the drawings of the indoor gymnasium that is scheduled to be built at B County, Chonbuk Province. The gymnasium is equipped with an optimized acoustic condition passing through the Acoustic Simulation Phase. From the results of an Acoustic Simulation, we can design an indoor gymnasium that is equipped with a considerably satisfying and improved acoustic performance compared with the building before it was reformed. It is also considered that the use of such materials can fundamentally reduce construction costs and can improve acoustic performance, at the planning and design stages for similar sporting facilities in the future.

흡음재 및 제진재의 최적배치를 이용한 구조-음향 연성계의 소음제어 (Sound Control of Structural-acoustic Coupling System Using Optimum Layout of Absorbing Material and Damping Material)

  • 김동영;홍도관;안찬우
    • 한국소음진동공학회논문집
    • /
    • 제15권2호
    • /
    • pp.161-168
    • /
    • 2005
  • The absorbing material is mostly used to changing the acoustic energy to the heat energy in the passive control, and that consists of the porous media. That controls an air borne noise while the stiffened plates, damping material and additional mass control a structure borne noise. The additional mass can decrease the sound by mass effect and shift of natural frequency, and damping material can decrease the sound by damping effect. The passive acoustic control using these kinds of control materials has an advantage that is possible to control the acoustic in the wide frequency band and the whole space at a price as compared with the active control using the various electronic circuit and actuator. But the space efficiency decreased and the control ability isn't up to the active control. So it is necessary to maximize the control ability in the specific frequency to raise the capacity of passive control minimizing the diminution of space efficiency such an active control. Therefore, the characteristics of control materials and the optimum layout of control materials that attached to the boundary of structure-acoustic coupled cavity were studied using sequential optimization on this study.

다수의 음원을 사용한 공간의 소리 제어 방법론 (Spatial Manipulation of Sound using Multiple Sources)

  • 최정우;김양한;박영진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.620-628
    • /
    • 2005
  • Spatial control of sound is essential to deliver better sound to the listener's position in space. As it can be experienced in many listening environments, the quality of sound can not be manifested over every position in a hall. This motivates us to control sound in a region we select. The primary focus of the developed method has to do with the brightness and contrast of acoustic image in space. In particular, the acoustic brightness control seeks a way to increase loudness of sound over a chosen area, and the contrast control aims to enhance loudness difference between two neighboring regions. This enables us to make two different kinds of zone - the zone of quiet and the zone of loud sound - at the same time. The other perspective of this study is on the direction of sound. It is shown that we can control the direction of perceived sound source by focusing acoustic energy in wavenumber domain. To begin with, the proposed approaches are formulated for pure-tone case. Then the control methods are extended to a more general case, where the excitation signal has broadband spectrum. In order to control the broadband signal in time domain, an inverse filter design problem is defined and solved in frequency domain. Numerical and experimental results obtained in various conditions certainly validate that the acoustic brightness, acoustic contrast, direction of wave front can be manipulated for some finite region in space and time.

  • PDF