• Title/Summary/Keyword: Acoustic Sound

Search Result 1,624, Processing Time 0.036 seconds

Study on low frequency swishing sound field by singularities in circular motion with large radius (큰 반경의 원운동을 하는 점 음원에 의한 저주파수 스위싱 음장 분석)

  • Lee, Gwang-Se;Cheong, Cheolung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.90-95
    • /
    • 2014
  • In order to investigate low frequency swishing noise of wind turbines, singularity in circular motion with large radius is introduced as a noise source model. By employing Lowson's acoustic analogy, simple exact solution is obtained. The solution shows that time histories of acoustic pressure at receiver points varied significantly according to receiver's directional location, even when the retarded time distributions are similar. However, the corresponding spectra of sound pressure for the receiver locations where the retarded time distributions are almost the same are not significantly different. It can be inferred from these results that the time-averaged sound pressure spectra which cannot take into account the detailed difference in the time-variation of wind turbine noise may not represent the sound quality of wind turbines due to its swishing.

  • PDF

The Acoustic Characteristics in Women Diver's Soombijil Sound (해녀의 숨비질소리에 대한 음향특징)

  • Han, Ji-Yeon;Park, Hyun-Ja;Jeong, Ok-Ran
    • Proceedings of the KSPS conference
    • /
    • 2007.05a
    • /
    • pp.176-179
    • /
    • 2007
  • This study examined the acoustic characteristics in women diver's Soombijil sound. A total of 18 women divers was attended this study. Acoustic analysis was performed via Praat. Soombijil sound were classified into three types as pitch variations in beginning, middle, and ending part. Type I showed increasing-decreasing-flat. Type II was identified by the shape of flat-flat-increasing. The shape of type III showed increasing-decreasing-increasing. Duration of Soombijil sound was mean 1.48 sec. The range of frequency was 1591.54 ${\sim}$ 4477.13 Hz. FFT analysis showed that frequencies were concentrated 500${\sim}$2000 Hz. Type I and II showed two peaks at 500 Hz and 1500${\sim}$2000 Hz. Type III has one peak below 500 Hz.

  • PDF

Tendency of Calibration and Test for Acoustic Field in KRISS (KRISS 에서 수행된 음향관련 교정 및 시험 검사 동향)

  • Suh, Jae-Gap;Jung, Sung-Soo;Jho, Moon-Jae;Suh, Sang-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1767-1771
    • /
    • 2000
  • We report the number of calibration and test for acoustic field which were conducted in KRISS between the year of 1990 and 1999. The items contain sound level meter and calibrator for calibration and sound absorption coefficient, transmission loss, sound pressure level of siren, sound pressure level and power of acoustic instrument and relative accessories for test. The data show that the number of them have been increased continuously.

  • PDF

The Evaluation of Floor Impact Sound Insulation in Apartment House by Psycho-acoustic Method (현장(現場) 청감실험(聽感實驗)에 의한 바닥충격음(衝擊音) 차음성능(遮音性能) 평가(評價))

  • Gi, No-Gab;Jang, Gil-Soo;Song, Min-Jeong;Kim, Jun-Yup;Kim, Sun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1741-1746
    • /
    • 2000
  • Recently the impact sound insulation performance is regarded as one of the most important factor in determining the quality of apartment house. So many studies were carried out to improve these performance and to propose an appropriate evaluation method and standard of floor impact sound insulation for apartment house by psycho-acoustic method in the laboratory. This study was carried out the field psycho-acoustic test to find a correlation between physically measured values and psychological response in apartment house, and the results will be used to establish the appropriate evaluation method and standard of floor impact sound insulation.

  • PDF

Acoustic Properties of Temporary Noise Barriers on Construction Site (건설공사장 가설방음벽의 음향 특성)

  • Chung, Jin-Yun;Im, Jung-Bin;Lee, Sung-Chan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.191-198
    • /
    • 2010
  • The noise by the construction activities is one of the main issues in Korea. To prevent the noise from construction site, construction company installs temporary noise barriers along the construction site boundary. Normally sound insulation performance ($R_w$) of the temporary noise barriers made by metal or plastic is between 18 and 31 dB and metallic noise barriers are around 5 dB higher than plastic noise barriers. Sound absorption performance (NRC) of the temporary noise barriers are between 0.20 and 0.59 so it's difficult to characterize their acoustic performance. In this study, it has founded that sound insulation performance of the temporary noise barrier has been improved about 3dB by stick the high density acoustic sheet and insertion loss of noise barrier is getting increased as the source and receiver approached the temporary noise barriers.

Numerical Simulation of Aerodynamic Sound by the Finite Difference Lattice Boltzmann Method (차분격자볼츠만법에 의한 유동소음의 수치계산)

  • 강호근;김은라
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.10-17
    • /
    • 2004
  • In this research, a numerical simulation for the acoustic sounds around a two-dimensional circular cylinder in a uniform flaw was developed, using the finite difference lattice Boltzmann model. We examine the boundary condition, which is determined by the distribution function concerning density, velocity, and internal energy at the boundary node. Pressure variation, due to the emission of the acoustic waves, is very small, but we can detect this periodic variation in the region far from the cylinder. Daple-like emission of acoustic waves is seen, and these waves travel with the speed of sound, and are synchronized with the frequency of the lift on the cylinder, due to the Karman vortex street. It is also apparent that the size of the sound pressure is proportional to the central distance to the circular cylinder. The lattice BGK model for compressible fluids is shown to be a powerful tool for the simulation of gas flaws.

A Study on the Proper Vocabularies for Evaluating Floor Impact Sound in Apartment Houses Considering Rating Methods (평가방법을 고려한 공동주택 바닥충격음 평가어휘 선정에 관한 연구)

  • 이재연;김선우;송민정
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.7
    • /
    • pp.626-631
    • /
    • 2004
  • In this study, the extracted words from the former study such as annoying, loud, noisy, irritating, disagreeable, strident, disturbed, and dissonant are given to subjects in psycho acoustic experiment lab. And then, correlation analysis between the words and floor impact noise rating method were carried out. As a result of this study followings are suggested ‘Annoying’ is the word most accurately expressing the subjects’ unpleasant feeling of domestic floor impact noise. The results of this study could be basic materials for psycho acoustic experiments for criteria on floor impact noise and Sound Classification on Floor Impact Sound Insulation Performance.

Architectural Acoustic Performance Renovation of the Large Gymnasium using Acoustic Simulation (음향시뮬레이션을 이용한 대형 실내체육관의 건축음향성능 개선에 관한 연구)

  • Yun, Jae-Hyun;Kim, Jae-Soo
    • Journal of the Korean housing association
    • /
    • v.19 no.4
    • /
    • pp.41-48
    • /
    • 2008
  • In this study, an analysis is carried out on the acoustic design for an indoor gymnasium scheduled to be built at Buan County, Chonbuk Province. By way of background, the study examines the case of a large-scale indoor gymnasium that has been constructed in the local area of Hangan-myeon. There are many examples whereby this gymnasium could be used not only as a sporting facility for the residents, but also as a multipurpose space for public performances such as leisure activities, lectures, assembling activities, theatre and concerts etc. In order to maximize the functional utilization of such an indoor gymnasium, it is important to simultaneously verify the acoustic capabilities of the space in terms of Definition of both Voice and Music. However, as a large-scaled athletic facility, the building was designed with a high ceiling-height to accommodate its functional characteristics. The space forms a Sound Focus whereby the sound is concentrated at a specific part, and because the vibration of sound is too loud due to its broad volume, acoustic defects arise such as a significant number of Echoes. Using this gymnasium as a precedent, this study proposes an acoustic design based on the drawings of the indoor gymnasium that is scheduled to be built at B County, Chonbuk Province. The gymnasium is equipped with an optimized acoustic condition passing through the Acoustic Simulation Phase. From the results of an Acoustic Simulation, we can design an indoor gymnasium that is equipped with a considerably satisfying and improved acoustic performance compared with the building before it was reformed. It is also considered that the use of such materials can fundamentally reduce construction costs and can improve acoustic performance, at the planning and design stages for similar sporting facilities in the future.

Noise Estimation in a Passenger Compartment and Trunk Coupled System by Using the Vibro-Acoustic Reciprocity (진동-음향 상반성을 이용한 차실-트렁크 연성계의 소음평가)

  • 이진우;이장무;김석현;박동철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.178-185
    • /
    • 2001
  • This paper describes the correlation between the interior noise and the trunk wall vibration. Using the vibro-acoustic reciprocity, effect of the trunk wall vibration on the compartment noise is investigated on a medium size car. In the low frequency range, vehicle interior noise is dominated by several acoustic modes of the passenger compartment and the vibration modes of the surrounding shell parts. Especially, vibration of the trunk wall radiates sound and it is transferred through holes on the package tray into the passenger compartment. This paper experimentally reveals that sound can be well produced at some particular vibration modes of the trunk lid and it strongly influences the compartment noise through package tray holes. Contributions of the trunk walls to the interior noise are estimated by measuring the acoustic-structural transfer function, based on the vibro-acoustical reciprocity theorem.

  • PDF

Development of an Acoustic Enclosure for the Large Low-Noise Transformer (저소음 변압기용 조립식 철판 방음실 개발)

  • Lee, Jun-Shin;Lee, Wook-Ryun;Kim, Seok-Man;Koo, Kyo-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.87-88
    • /
    • 2007
  • An acoustic total or partial enclosure is widely used to reduce the sound pressure level propagating from a noise source. However, the performance of the acoustic enclosure is decreased by its inherent limitations such as temperature rise or acoustic pressure build-up inside the enclosed acoustic field. In this reason, an acoustic enclosure consisting of a silencer and absobent panels with acoustic resonators is studied to reduce the transmitted noise from a transformer. Large sound-attenuation is expected by applying the enclosure to the large transformers in a substation.

  • PDF