• 제목/요약/키워드: Acoustic Pressure Coefficient

검색결과 48건 처리시간 0.026초

A Study on Correlation Between Pressure Variations and Augmentation of Heat Transfer in Acoustic Fields

  • Oh, Yool-Kwon;Yang, Ho-Dong
    • Journal of Mechanical Science and Technology
    • /
    • 제18권9호
    • /
    • pp.1630-1639
    • /
    • 2004
  • The present paper investigated the correlation between the acoustic pressure variations and the augmentation of heat transfer in the ultrasonic induced acoustic fields. The augmentation ratios of heat transfer coefficient were experimentally measured and were compared with the profile of the pressure distribution in the acoustic fields predicted by numerical analysis. For numerical analysis, a coupled finite element-boundary element method (coupled FE-BEM) was applied. The results of the present study reveal that the acoustic pressure is higher near two ultrasonic transducers than other points where no ultrasonic transducer was installed. The augmentation trend of heat transfer is similar with the profile of the acoustic pressure distribution. In other words, as the acoustic pressure increases, the higher augmentation ratio of heat transfer is obtained. Numerical and experimental studies clearly show that the acoustic pressure variations are closely related to the augmentation of heat transfer in the acoustic fields.

초음파 진동 가진시 발생하는 압력과 열전달 촉진과의 상관관계에 관한 연구 (A Study on Correlation Between Acoustic Pressure and Heat Transfer Augmentation via Ultrasonic Vibration)

  • 오율권;양호동
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2004년도 추계학술대회 논문집
    • /
    • pp.22-25
    • /
    • 2004
  • The present paper investigated the correlation between acoustic pressure and heat transfer augmentation in acoustic fields. The acoustic pressure predicted by numerical work and compared with the augmentation ratio of heat transfer coefficient was experimentally measured. Also, particle image velocimetry(PIV) was used for the visualization of velocity vectors and kinetic energy distribution inside liquid region. For the numerical work, SVS programed with Fortran language and based on a coupled FE-BEM was used. Results of the present study, the acoustic pressure is increased by $60\%$ and the largest augmentation of heat transfer about $28\%$ was measured. Finally, the profiles of acoustic pressure is consistent with that of augmentation of heat transfer. It is concluded that a correlation exists between the acoustic pressure and the heat transfer augmentation.

  • PDF

위성 발사체 탑재부 저주파 음향 모드 제어를 위한 공명기 배치 설계 (Design of Acoustic Resonator Array for Low Frequency Mode Control of Launch Vehicle)

  • 서상현;박순홍;장영순;이영무;조광래
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.521-524
    • /
    • 2005
  • To protect a satellite and electronic equipment from the acoustic loads generated by rocket propulsion system, many launch vehicle use acoustic blanket. Most high frequency region of the acoustic loads is reduced by nose fairing skins and acoustic barrier, but low frequency region is not. In order to control low frequency acoustic mode, we designed away resonator panel which was made of composite materials. This paper shows the absorption coefficient measurement result of resonator and SPL(Sound Pressure Level) reduction by using resonators in a rectangular cavity for experiment. Proper arrangement of acoustic resonators at each mode reduce effectively SPL around the satellite through changing boundary condition.

  • PDF

음향 임피던스 측정을 위한 이중 마이크로폰 기법에 대한 고찰 (Note on the Two-Microphone Methods for the Measurement of Acoustic Impedance)

  • 서성현
    • 한국수소및신에너지학회논문집
    • /
    • 제29권2호
    • /
    • pp.163-169
    • /
    • 2018
  • The present article discusses about the measurement techniques of acoustic impedance that becomes one of the important acoustic characteristics of various boundaries found inside of propulsion systems. Acoustic characteristics including acoustic impedance and reflection coefficient can be often assessed and estimated by use of the two-microphone method. Theoretical expressions of acoustic impedance and reflection coefficient measured in an impedance tube are presented for both cases with mean flow and without flow, and the practical application of the method through calibration is also provided. The acoustic impedance and the reflection coefficient are related with axial locations of microphones, thermodynamic characteristics of gas inside, and the transfer function between the pressure wave measurements at multiple locations.

음향흐름에 의한 음압과 열전달 촉진과의 관계 (The Relation of Enhancement Heat Transfer to Acoustic Pressure by Acoustic Streaming)

  • 양호동;오율권
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.591-596
    • /
    • 2005
  • The objectives in the present study are to investigate that the enhancement heat transfer was experimentally measured and was compared with the acoustic pressure obtained by numerical analysis. From the results of the present study, a strong Fluid motion initiated by ultrasonic vibrations can affect heat and mass transfer. This phenomenon. called acoustic streaming, clearly observed by PIV measurement leads to increase in velocity of a Fluid which is a crucial physical concept to explain the enhancement heat transfer. The heat transfer coefficient is increased with increase in the ultrasonic intensities. The largest enhancement heat transfer (about 26%) is measured at the ultrasonic intensity of 300W. Acoustic streaming results from sudden acoustic pressure variations in the liquid. The results of numerical analysis reveal that acoustic pressure is increased by 59.5% at the ultrasonic intensity of 300W. The higher acoustic pressure near four ultrasonic transducers develops more intensive flow destroying the flow instability. Also, the profiles of acoustic pressure variation are consistent with those of enhancement heat transfer.

  • PDF

초음파 가진시 압력변동이 열전달 향상에 미치는 영향 (Effect of Pressure Variations on Augmentation of Heat Transfer by Ultrasonic Vibrations)

  • 양호동;오율권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1069-1074
    • /
    • 2004
  • This study investigated the effect of pressure variations on augmentation of heat transfer when the ultrasonic waves were applied. The augmentation ratio of heat transfer was experimentally investigated and was compared with the profiles of pressure distributions calculated applying a coupled finite element-boundary element method (coupled FE-BEM). As the ultrasonic intensities increase from 70W to 340W, the velocity of the liquid paraffin is found to increase as well as kinetic energy, This physical behavior known as quasi-Eckart streaming results from acoustic pressure variations in the liquid. Especially, the higher acoustic pressure distribution near two ultrasonic transducers develops more intensive flow (quasi-Eckart streaming), destroying the flow instability. Also, the profile of acoustic pressure variation is consistent with that of augmentation of heat transfer. This mechanism is believed to increase the ratio of hear transfer coefficient.

  • PDF

환형 공명기가 설치된 소음기 설계 및 성능 시험 (Design and Performance Test of Silencers with Ring-shaped Resonators)

  • 김봉기;김상렬;이성현;이종화;이해성
    • 한국소음진동공학회논문집
    • /
    • 제21권4호
    • /
    • pp.357-364
    • /
    • 2011
  • In this study, ring-shaped acoustic resonators were proposed to be installed in a silencer to increase the acoustic performance of silencer in the low-frequency range. Evaluation of noise reduction performance of acoustic resonator arrays was carried out by measuring the random-incidence absorption coefficient. It was found that the absorption coefficient of resonator array was measured up to 1 at 125 Hz of 1/3-octave band center frequency. Insertion losses of silencers with ring-shaped acoustic resonator arrays were measured based on ISO 7235. The results were shown that the ring-shaped resonator could increase the insertion loss up to 13 dB without flow, whereas 7 dB when flow speed reached 15 m/s. As increasing the flow speed above 15 m/s, the effect of acoustic resonator decreased due to the effect of nonlinear air damping of the resonator. It was also found that the increment of pressure drop by the presence of resonator arrays was about 9 % at flow speed of 25 m/s.

KRISS에서 수행된 음향관련 교정 및 시험 동향 (Tendency of Calibration and Test for Acoustic Field in KRISS)

  • 서재갑;권휴상;정성수;조문재;서상준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.448-452
    • /
    • 2002
  • We report the number of calibration and test for acoustic field which were conducted in KRISS between the year of 1990 and 2001. The items contain sound level meter and calibrator for calibration and sound absorption coefficient, transmission loss, sound pressure level of siren, sound pressure level and power of acoustic instrument and relative accessories for test. The data show that the number of them have been increased continuously.

  • PDF

다물체계내 유연체의 구조기인 소음해석 (Structure Borne Noise Analysis of a Flexible Body in Multibody System)

  • 김효식;김창부
    • 한국소음진동공학회논문집
    • /
    • 제13권11호
    • /
    • pp.882-889
    • /
    • 2003
  • This paper presents the method for structure borne noise analysis of a flexible body in multibody system. The proposed method is the superposition method using the flexible multibody dynamic analysis and the finite element one. This method is executed in 3 steps. In the 1st step, time dependent quantities such as dynamic loads, modal coordinates and gross body motion of the flexible body are calculated through a flexible multibody dynamic analysis. And frequency response functions of those time dependent quantities are computed through Fourier transforms. In the 2nd step, acoustic pressure coefficients are obtained through structure-acoustic coupling analyses by the finite element method. In the final step, frequency responses of acoustic pressure at the acoustic nodes are recovered through linear superposition of frequency response functions with acoustic pressure coefficients. The accuracy of the proposed method is verified in the numerical example of a simple car model.

높은 입사 음압에서의 미세 천공판을 이용한 흡음 기구의 설계 (Design of a Micro-perforated Panel Absorber at High Incident Sound Pressure)

  • 박순홍;서상현;장영순
    • 한국소음진동공학회논문집
    • /
    • 제20권10호
    • /
    • pp.983-990
    • /
    • 2010
  • Reduction of acoustic loads of space launch vehicles can be achieved by acoustic absorbers satisfying strict cleanness requirements. This limited the use of general porous materials and requires non-porous sound absorbers. Micro-perforated panel absorbers(MPPA) is one of promising sound absorbers satisfying the cleanness requirement for launch vehicles. However, its applicability was limited to low sound pressure levels according to the acoustic impedance model of micro-perforated panels. In this paper the applicability of micro-perforated panel absorbers at high incident sound pressure was investigated in experimental ways. The absorption characteristics of a micro-perforated panel absorber was simulated according to its design variables, e.g., minute hole diameters and aperture ratios. It was shown that optimal design can be readily done by using proposed design charts. Experiments were conducted to measure acoustic properties of the designed micro-perforated panel absorbers. The results showed that acoustic resistance increases rapidly as incident sound pressure level does but change of acoustic reactance can be neglected in a practical point of view. This caused the decrease of peak value of absorption coefficient at high incident sound pressure level, but the amount of reduction can be accepted in practice. The major advantage of the micro-perforated panel absorber(wide absorption bandwidth) was still kept at high sound pressure level.