• Title/Summary/Keyword: Acoustic Natural Frequency

Search Result 109, Processing Time 0.026 seconds

Examination on High Vibration of Recirculation System for Feed Water Piping in Combined Cycle Power Plant (복합 발전소 주급수 재순환 배관계의 고진동 현상 및 대책)

  • Kim, Yeon-Whan;Kim, Jae-Won;Park, Hyun-Gu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.648-654
    • /
    • 2011
  • The feed-water piping system constitutes a complex flow impedance network incorporating dynamic transfer characteristics which will amplify some pulsation frequencies. Understanding pressure pulsation waves for the feed-water recirculation piping system with cavitation problem of flow control valve is very important to prevent acoustic resonance. Feed water recirculation piping system is excited by potential sources of the shock pulse waves by cavitation of flow control valve. The pulsation becomes the source of structural vibration at the piping system. If it coincides with the natural frequency of the pipe system, excessive vibration results. High-level vibration due to the pressure pulsation affects the reliability of the plant piping system. This paper discusses the piping vibration due to the effect of shock pulsation by the cavitation of the flow control valves for the recirculation piping of feed-water pump system in combined cycle power plants.

  • PDF

A Study on the Characteristic of Noise and Vibration in 3-phase Induction Motor for the Forklift (전동 지게차용 3상 유도 모터의 소음 진동 특성에 대한 연구)

  • Kim, Woo-Hyung;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.1
    • /
    • pp.3-9
    • /
    • 2009
  • This paper presents the reduction of acoustic noise generated by electromagnetic force in an induction motor of the electrical forklift. After summarizing the electromagnetic excitation forces due to the interaction between the stator/rotor slot permeance and the stator winding magnetomotive force, the effects of the electromagnetic force on the noise and vibration of an induction motor are analyzed. In order to experimentally identify the noise sources of the motor, the signal analyses for noise and vibration are performed by using waterfall plots of noise and vibration spectrums. It is found that severe noise and vibration are caused by the electromagnetic force when the mode number of the excitation shape for a stator is low. Furthermore, it is verified that the motor noise is amplified if the excitation frequency of the electromagnetic force coincides with one of the natural frequencies of the stator. It is experimentally demonstrated that this severe noise can be considerably reduced by structure modifications. Finally, some design guidelines are suggested to develop an induction motor with a low level of noise.

Guidance to the Praat, a Software for Speech and Acoustic Analysis (음성 및 음향분석 프로그램 Praat의 임상적 활용법)

  • Seong, Cheol Jae
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.33 no.2
    • /
    • pp.64-76
    • /
    • 2022
  • Praat is a useful analysis tool for linguists, engineers, doctors, speech-language pathologits, music majors, and natural scientists. Basic parameters including duration, pitch, energy and perturbation parameters such as jitter and shimmer can be easily measured and manipulated in the sound editor. When a more in-depth analysis is needed, it is recommended to understand the advanced menus of the object window and learn how to use them. Among the object window menus, vowel formant analysis, spectrum analysis, and cepstrum analysis can be cited as useful ones in the clinical field. The spectrum object can be usefully used for voice quality measurement and diagnosis of patients with voice disorders by showing the energy distribution according to frequency axis (domain). A cepstrum object is useful for speech analysis when periodicity of the sound object is not measurable. The low to high ratio obtained from the spectral object and the CPPs measured from the cepstrum object have attracted many researchers, and it has been proven that the CPPs measured in Praat are relatively excellent.

Comparative Study on Acoustic Characteristics of Vocal Fold Paralysis and Benign Mucosal Disorders of Vocal Fold (성대마비와 양성 성대점막질환의 음향학적 특성비교)

  • Kong, Il-Seung;Cho, Young-Ju;Lee, Myung-Hee;Kim, Jong-Seung;Yang, Yun-Su;Hong, Ki-Hwan
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.18 no.2
    • /
    • pp.122-128
    • /
    • 2007
  • This study aims to analyze the voices of the patients with voice disorders including vocal fold paralysis, vocal fold cyst and vocal nodule/polyp in the aspect of acoustic phonetics. This study intends to collect subsidiary acoustic data in order to make a speech treatment and an standardization of vocal disorders. Subjects and Methods: The subjects of this study were 64 adult patients who underwent indirect laryngoscopy and laryngostroboscopy, and were diagnosed as vocal fold paralysis, vocal fold cyst or vocal nodule/polyp. Experimental group consisted of 20 patients who were diagnosed as vocal fold paralysis, 21 patients who were diagnosed as vocal fold cyst and had the average age of 42.0 $({\pm}10.03)$ ; and 23 patients who were diagnosed as vocal nodule/polyp and had the average age of 40.9 $({\pm}13.75)$. For the methodology of this study, the patients listed above were asked to sit in a comfortable position at intervals of 10cm apart from the patient's mouth and a microphone, and subsequently to phonate a vowel sound /e/ for the maximum phonation time with natural tone and vocal volume then the sound was directly inputted on a computer. During recording, sampling rate was set to 44,100Hz and the 1-second area corresponding to stable zone except the first and the last stage of waveform of the vowel sound /e/ vocalized by the individual patients was analyzed. Results: First, there was no statistically significant difference in jitter and shimmer between vocal fold paralysis and vocal fold cyst, while there was highly statistically significant difference in them between vocal fold paralysis and vocal nodule/polyp. Second, looking into the mean values obtained from NNE, HNR and SNR results associated with noise ratio, the disease showing the most abnormal characteristics was vocal fold paralysis, followed by cyst and nodule/polyp in order. For NNE, there was statistically significant difference between vocal nodule/polyp, and cyst or paralysis. In other words, it was found that the NNE of vocal nodule/polyp was weaker than that of cyst or paralysis. Similarly, HNR and SNR also showed the same characteristics; there was statistically significant difference between vocal fold paralysis and vocal fold cyst or nodule/polyp, and HNR and SNR values of vocal fold paralysis were lower than those of vocal fold cyst or nodule/polyp. Conclusion: For vocal fold paralysis, the abnormal values of acoustic parameters associated with frequency, amplitude and noise ratio were statistically significantly higher than those of vocal fold cyst and nodule/polyp. This finding suggests that the voices of the patients with vocal fold paralysis are the most severely injured due to less stability of vocal fold movement, asymmetry and incomplete glottic closure. In addition, there was no statistically significant difference in the acoustic parameters of tremor among vocal fold paralysis, vocal fold cyst and vocal nodule/polyp. Further studies need to ascertain reasonable acoustic parameters with various vocal disorders as well as to clarify the correlation between acoustics-based objective tools and subjective evaluations.

  • PDF

Development of Automatic Calibration System for PC-Based Pure Tone Audiometer (PC 기반 순음청력검사기를 위한 자동보정시스템 개발)

  • Kim, Jin-Dong;Kang, Deok-Hun;Song, Bok-Deuk;Lee, Il-Woo;Kong, Soo-Keun;Kwon, Soon-Bok;Jeon, Gye-Rok;Shin, Bum-Joo;Wang, Soo-Geun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.7
    • /
    • pp.2586-2594
    • /
    • 2010
  • A pure tone audiometer should be able to produce both pure tone and masking noise with exact sound pressure level and frequency. For such purpose, it is unavoidable to periodically calibrates pure tone audiometer. However, manual acoustic calibration requires not only attention but also long time. It is possible to execute automatically calibration using software if it is PC-based pure tone audiometer. In this paper, we describe auto-calibration software for PC-based pure tone audiometer and dedicated sound level meter which has been implemented upon PC by us. To verify auto-calibration module, we examine whether output of PC-based audiometer calibrated through auto-calibration of this paper satisfies RETSPL of IEC or not.

State-of-the-art Studies on Infrasound Monitoring in Korea (국내 인프라사운드 관측기술의 최신 연구 동향)

  • Che, Il-Young;Lee, Hee-Il;Jeon, Jeong-Soo;Shin, In-Cheul;Chi, Heon-Cheol
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.286-294
    • /
    • 2010
  • Korea Institute of Geoscience and Mineral Resources (KIGAM) has installed and operated seven seismoacoustic (infrasound) arrays as well as seismic stations in Korea. The seismo-acoustic array, which consists of co-located seismometers and micro-barometers, can observe both seismic and infrasonic signals from distant explosive phenomena. The infrasound is defined as low frequency (<20 Hz) acoustic waves in atmosphere. In particular, it can be detectable at long distance due to its low energy attenuation during propagation in atmosphere. KIGAM adopted the infrasound technology to discriminate surface explosions from earthquakes only because the surface explosion generally generates infrasound following seismic signal. In addition to surface explosions, these arrays have detected diverse geophysically natural and artificial phenomena, such as infrasound signal from the North Korean nuclear test. This review introduced the state-of-the-art studies and examples of infrasonic signals in and around the Korean Peninsula. In conclusion, infrasound technology would be clearly accepted itself as a new Earth monitoring technology by expanding its detectable regime to lithosphere-Earth surface-atmosphere. In future, an advanced technology, which allows to analyze seismic and infrasonic wave fields together, will enlarge the understanding of geophysical phenomena and be used as a robust analysis method for remote explosive phenomena in the broad infrasound regime.

Correlation Analysis of Signal to Noise Ratio (SNR) and Suspended Sediment Concentration (SSC) in Laboratory Conditions (실험수로에서 신호대잡음비와 부유사농도의 상관관계 분석)

  • Seo, Kanghyeon;Kim, Dongsu;Son, Geunsoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.5
    • /
    • pp.775-786
    • /
    • 2017
  • Monitoring sediment flux is crucial especially for maintaining river systems to understand morphological behaviors. Recently, hydroacoustic backscatter (or SNR) as a surrogate to empirically estimate suspended sediment concentration has been increasingly highlighted for more efficient acquisition of sediment dataset, which is difficult throughout direct sediment sampling. However, relevant contemporary researches have focused on wide range solution applicable for large natural rivers where H-ADCPs with relatively low acoustic frequency have been widely utilized to seamlessly measure streamflow discharge. In this regard, this study aimed at investigating hydroacoustical characteristics based on a very recently released H-ADCP (SonTek SL-3000) with high acoustic frequency of 3 MHz in order to capitalize its capacity to be applied for suspended sediment monitoring in laboratory conditions. SL-3000 was tested in a laboratory flume to collect SNR in conjunction with LISST-100X for actual sediment concentration and particle distribution in both sand and silt sediment injection in various amount. Conventional algorithms to correct signal attenuations for water and sediment were carefully tested to validate whether they can be applied for SL-3000. As result of analyzing the SNR-SSC correlation trand, through further study in the future, it is confirmed that SSC can be observed indirectly by using the SNR.

Reliability of Non-invasive Sonic Tomography for the Detection of Internal Defects in Old, Large Trees of Pinus densiflora Siebold & Zucc. and Ginkgo biloba L. (노거수 내부결함 탐지를 위한 비파괴 음파단층촬영의 신뢰성 분석(소나무·은행나무를 중심으로))

  • Son, Ji-Won;Lee, Gwang-Gyu;An, Yoo-Jin;Shin, Jin-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.5
    • /
    • pp.535-549
    • /
    • 2022
  • Damage to forests, such as broken or falling trees, has increased due to the increased intensity and frequency of abnormal climate events, such as strong winds and heavy rains. However, it is difficult to respond to them in advance based on prediction since structural defects such as cavities and bumps inside trees are difficult to identify with a visual inspection. Non-invasive sonic tomography (SoT) is a method of estimating internal defects while minimizing physical damage to trees. Although SoT is effective in diagnosing internal defects, its accuracy varies depending on the species. Therefore, it is necessary to analyze the reliability of its measurement results before applying it in the field. In this study, we measured internal defects in wood by cross-applying destructive resistance micro drilling on old Pinus densifloraSiebold & Zucc. and Ginkgo bilobaL., which are representative tree species in Korea, to verify the reliability of SoT and compared the evaluation results. The t-test for the mean values of the defect measurement between the two groups showed no statistically significant difference in pine trees and some difference in ginkgo trees. Linear regression analysis results showed a positive correlation with an increase in defects in SoT images when the defects in the drill resistance graph increased in both species.

Korea Offshore Seismic Data Processing for Gas Detection (천연 가스 탐지를 위한 국내 대륙붕 탄성파자료 처리)

  • Jang, Seong-Hyung;Sunwoo, Don;Yang, Dong-Woo;Suh, Sang-Young;Chung, Bu-Heung
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.4
    • /
    • pp.115-123
    • /
    • 2001
  • The bright spot is an indicator for natural gas on seismic stack sections, but it is also shown on layers where the acoustic impedance contrast is large. In order to distinguish sharply between gas and impedance contrast we need additional detailed data processing such as velocity analysis, AVO analysis and seismic complex analysis including measures of seismic amplitude, frequency, and phase. In this study, we performed detailed velocity analysis, complex analysis and DHI (Direct Hydrocarbon Indicator) analysis which is the result of amplitude variation according to the incident angles. The seismic complex analysis gives us the geological information which depends on geophysical properties at the interest layer. For the complex analysis, we computed several seismic attributes such as the instantaneous amplitude, the first and the second derivatives of the instantaneous amplitude, the instantaneous phase, the instantaneous frequency and weighted average instantaneous frequency. Then we applied these analysis techniques to a seismic data of Korea offshore which had been logged. From the result of this data analysis, it could be said that high possibility area for gas layer detection has amplitude anomalies in the instantaneous amplitude, the instantaneous frequency and the DHI section resulting from the AVO analysis. If there are not any other anomalies in detailed data processing, it will have low possibility for gas layer detection.

  • PDF

An Analysis of the Acoustical Source Characteristics in the Time-varying Fluid Machines (유체기계 덕트 내 시변 음원의 음향 특성에 관한 연구)

  • 장승호;이준신;이정권
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.104-112
    • /
    • 2003
  • The in-duct acoustical sources of fluid machines are often characterized by the source impedance and strength using the linear time-invariant model. However, negative resistances, which are physically unreasonable, have been found throughout various measurements of the source properties in IC-engines and compressors. In this paper, the effects of the time-varying nature of fluid machines on the source characteristics are studied analytically. For this purpose, the simple fluid machine consisting of a reciprocating piston and an exhaust is considered as representing a typical periodic, time-varying system and the equivalent circuits are analyzed. Simulated measurements using the analytic solutions show that the time-varying nature in the actual sources is one of the main causes of the negative source resistances. It is also found that, for the small magnitude of the time-varying component, the source radiates large acoustic power if the piston operates at twice the natural frequency of the static system. or integral submultiples of that rate.