• Title/Summary/Keyword: Acoustic Inspection

Search Result 103, Processing Time 0.022 seconds

A Study of the Couplant Effects on Contact Ultrasonic Testing

  • Kim, Young-H.;Song, Sung-Jin;Lee, Sung-Sik;Lee, Jeong-Ki;Hong, Soon-Shin;Eom, Heung-Seop
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.6
    • /
    • pp.621-626
    • /
    • 2002
  • The amplitude of a back-wall echo depends on the reflection coefficient of the interface between a transducer and a test material when using contact pulse-echo ultrasonic testing. A couplant is used to transmit ultrasonic energy across the interface, but has an influence on the amplitude of the pulse-echo signal. To investigate the couplant effect on pulse-echo ultrasonic testing, back-wall echoes are measured by using various couplants made of water and glycerine in a carbon and austenitic stainless steel specimens. The amplitude of the first back-wall echo and the apparent attenuation coefficient increases with the acoustic impedance of the couplant. The couplant having a higher value of the transmission coefficient is more effective for flaw detection. The reflection coefficient should be known in order to measure the attenuation coefficient of the test material.

A Study of the Acoustic Microscope System by Large Aperture Probe (대구경 탐촉자를 이용한 초음파 현미경 시스템 연구)

  • Cho, Yong-Sang;Kim, Jae-Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.5
    • /
    • pp.475-479
    • /
    • 2003
  • Traditional ultrasonic evaluation to detect micro/small surface cracks is the pulse-echo technique using the normal immersion transducer with high frequency, or the angle beam transducer with surface wave. It is difficult to make the automatic ultrasonic system that is to detect micro and small surface crack and position on the large structure like steel and ceramic rolls, because of the huge data of inspection and the ambiguous position data of transducer. The aim of this study using the high precision scanning acoustic microscope with 10MHz large aperture transducer was to display the real time A, B, C-scan for the automatic ultrasonic system in order to detect the existence and position of surface crack. The ultrasonic method with large aperture transducer was improved the scanning time and speed over 10times faster than traditional methods.

Automatic Eggshell Crack Detection System for Egg Grading (계란 등급판정을 위한 파각란 자동 검사 시스템)

  • Choi, Wan-Kyu;Lee, Kang-Jin;Son, Jae-Ryong;Kang, Suk-Won;Lee, Ho-Young
    • Journal of Biosystems Engineering
    • /
    • v.33 no.5
    • /
    • pp.348-354
    • /
    • 2008
  • Egg grading is determined by exterior and interior quality. Among the evaluation methods for the egg quality, a candling method is common to identify eggs with cracked shells and interior defects. But this method is time-consuming and laborious. In addition, practically, it is challenging to detect hairline and micro cracks. In this study, an on-line inspection system based on acoustic resonance frequency analysis was developed to detect hairline cracks on eggshells. A roller conveyor was used to transfer eggs along one lane to the impact position where each of eggs rotated by the roller was excited with an impact device at four different locations on the eggshell equator. The impact device was consisted of a plastic hammer and a rotary solenoid. The acoustic response of the egg to the impact was measured with a small condenser microphone at the same position as the impact device was installed. Two acoustic parameters, correlation coefficient for normalized power spectra and standard deviation of peak resonant frequencies, were used to detect cracked eggs. Intact eggs showed relatively high correlations among the four normalized power spectra and low standard deviations of the four peak resonant frequencies. On the other hand, cracked eggs showed low correlations and high standard deviations as compared to the intact. This method allowed a crack detection rate of 97.6%.

The Basic Study on the Method of Acoustic Emission Signal Processing for the Failure Detection in the NPP Structures (원전 구조물 결함 탐지를 위한 음향방출 신호 처리 방안에 대한 기초 연구)

  • Kim, Jong-Hyun;Korea Aerospace University, Jae-Seong;Lee, Jung;Kwag, No-Gwon;Lee, Bo-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.5
    • /
    • pp.485-492
    • /
    • 2009
  • The thermal fatigue crack(TFC) is one of the life-limiting mechanisms at the nuclear power plant operating conditions. In order to evaluate the structural integrity, various non-destructive test methods such as radiographic test, ultrasonic test and eddy current are used in the industrial field. However, these methods have restrictions that defect detection is possible after the crack growth. For this reason, acoustic emission testing(AET) is becoming one of powerful inspection methods, because AET has an advantage that possible to monitor the structure continuously. Generally, every mechanism that affects the integrity of the structure or equipment is a source of acoustic emission signal. Therefore the noise filtering is one of the major works to the almost AET researchers. In this study, acoustic emission signal was collected from the pipes which were in the successive thermal fatigue cycles. The data were filtered based on the results from previous experiments. Through the data analysis, the signal characteristics to distinguish the effective signal from the noises for the TFC were proven as the waveform difference. The experiment results provide preliminary information for the acoustic emission technique to the continuous monitoring of the structure failure detection.

Experimental Study on the On-line Monitoring of Offshore Structures Using Acoustic Emission Technology (음향방출법을 이용한 해양구조물의 온라인 감시에 관한 실험적 연구)

  • Won, Soon-Ho;Cho, Kyung-Shik
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3B
    • /
    • pp.73-82
    • /
    • 1999
  • In this research, an experimental study is presented to check the possibilities of offshore structures monitoring using AE techniques. The underwater transducer and preamplifier are fabricated. And, it is proved that this unit can be used for the detection of AE in offshore structures. Wave propagation studies have shown that supplementary attenuations due to seawater are significantly reducing the detection range of the sensors. It excludes the possibility of offshore structures monitoring with a small number of sensors. We conclude that AE waves would be correctly detected for a path of about 3m. Tubular joints have been tested in air and underwater using simulated elastic wave. Ability of AE techniques to detect and locate cracks early in their evolution has been demonstrated. Several parameters of AE generation have been set in evidence. It has also been shown that crack development goes with an increase of AE parameter. Conclusively, it is shown that AE techniques can provide practical alternatives to present methods being used for inspection of deep-water offshore structures undergoing structural degradation due to fatigue crack growth.

  • PDF

Current advances in detection of abnormal egg: a review

  • Jun-Hwi, So;Sung Yong, Joe;Seon Ho, Hwang;Soon Jung, Hong;Seung Hyun, Lee
    • Journal of Animal Science and Technology
    • /
    • v.64 no.5
    • /
    • pp.813-829
    • /
    • 2022
  • Internal and external defects of eggs should be detected to prevent cross-contamination of intact eggs by abnormal eggs during storage. Emerging detection technologies for abnormal eggs were introduced as an alternative to human inspection. The advanced technologies could rapidly detect abnormal eggs. Abnormal egg detection technologies using acoustic response, machine vision, and spectroscopy have been commercialized in the poultry industry. Non-destructive egg quality assessment methods meanwhile could preserve the value of eggs and improve detection efficiency. In order to improve detection efficiency, it is essential to select a proper algorithm for classifying the types of abnormal eggs. This review deals with the performance of the detection technologies for various types of abnormal eggs in recently published resources. In addition, the discriminant methods and detection algorithms of abnormal eggs reported in the published literature were investigated. Although the majority of the studies were conducted on a laboratory scale, the developed detection technologies for internal and external defects in eggs were technically feasible to obtain the excellent detection accuracy. To apply the developed detection technologies to the poultry industry, it is necessary to achieve the detection rates required from the industry.

Deep Learning CFRP Failure Classification based on Acoustic Emission Testing for Safety Inspection during TypeIII Hydrogen Vessel Operation (TypeIII 수소저장용기 가동 중 안전 검사를 위한 음향방출시험 기반 딥러닝 CFRP 소재 결함 분류)

  • Da-Hyun Kim;Byeong-Il Hwang;Gyeong-Yeong Kim;Dong-Ju Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.07a
    • /
    • pp.7-10
    • /
    • 2023
  • 최근 기후 변화가 심각해짐에 따라 수소 에너지에 대한 관심이 집중되고 있으며 이를 안전하게 운송/보관할 수 있는 용기에 대한 연구도 활발히 진행되고 있다. 특히 고압 가스를 저장하는 TypeIII 용기의 노후화 및 안전과 관련되어 결함을 인지하는 연구가 활발하다. 그러나 이 용기의 외각층을 이루는 CFRP 소재는 탄소 섬유와 에폭시가 복잡한 구조로 구성되어 결함별 탐지가 매우 어렵다. 본 논문에서는 음향방출시험과 딥러닝을 활용하여 CFRP 결함 데이터셋을 구축하고 이를 분류할 수 있는 모델을 제안한다. 특히 CFRP 시편을 직접 제작하여 AE 센서를 부착하고 파괴하여 파형 데이터를 수집하였다. 이후 표현 학습을 통해 데이터의 특징을 압축/추출하고 유사도를 비교해 결함별 데이터를 판별하는 알고리즘을 개발하였다. 구축된 데이터셋의 실루엣 계수는 0.86으로 높은 군집도를 보였다. 마지막으로 구축된 데이터셋을 실시간으로 분류할 수 있는 1D-CNN 딥러닝 모델을 개발하였으며 99.33%의 높은 분류 정확도를 보였다.

  • PDF

Development of a Guided Wave Technique for the Inspection of a Feeder Pipe in a Pressurized Heavy Water Reactor

  • Cheong, Yong-Moo;Lee, Dong-Hoon;Kim, Sang-Soo;Jung, Hyun-Kyu
    • Corrosion Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.108-113
    • /
    • 2005
  • One of the recent safety issues in the pressurized heavy water reactor (PHWR) is the cracking of the feeder pipe. Because of the limited accessibility to the cracked region and a high dose of radiation exposure, it is difficult to inspect all the pipes with the conventional ultrasonic method. In order to solve this problem, a long-range guided wave technique has been developed. A computer program to calculate the dispersion curves in the pipe was developed and the dispersion curves for the feeder pipes in PHWR plants were determined. Several longitudinal and/or flexural modes were selected from the review of the dispersion curves and an actual experiment has been carried out with the specific alignment of the piezoelectric ultrasonic transducers. They were confirmed as L(0,1)) and/or flexural modes(F(m,2)) by the short time Fourier transformation(STFT) and were sensitive to the circumferential cracks, but not to the axial cracks in the pipe. An electromagnetic acoustic transducers(EMAT) was designed and fabricated for the generation and reception of the torsional guided wave. The axial cracks were detected by a torsional mode(T(0,1)) generated by the EMAT.

Research on the Non-Contact Detection of Internal Defects in a Rail Using Ultrasonic Waves (비접촉 초음파 방식의 철도레일 내부결함 검출에 관한 연구)

  • Han, Soon-Woo;Cho, Seung-Hyun;Kim, Joon-Woo;Heo, Tae-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.1010-1019
    • /
    • 2012
  • Non-contact detection of internal defects in a rail using ultrasonic waves is discussed in this paper. Cracks in a rail may be the cause of a serious railway accident such as derailment if left undetected. Concurrent rail inspection method based on ultrasonic testing using piezoelectric transducers has several limitations as it should keep physical contact with the rail. This work suggests a non-contact detection of internal defects in a rail using ElectroMagnetic Acoustic Transducers (EMAT) which can produce and measure ultrasonic waves in a rail without any couplant. The EMATs for rail inspection are designed and fabricated and their working performance is verified through a series of experiments on various types of internal defects in test rails. The effect of lift-off between the transducers and the rail on the generated signals is also discussed.

Structural Performance of Reinforced Concrete Beams Exposed to Freeze-Thawing Environment After Strengthening in Shear with Carbon Fiber-Reinforced Polymer(CFRP) (탄소섬유 폴리머로 전단보강 후 동결융해 환경에 노출된 철근콘크리트 보의 구조성능)

  • Song, Seon-Hwa;Kim, Sun-Woo;Park, Wan-Shin;Choi, Ki-Bong;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.115-125
    • /
    • 2009
  • In these days, carbon fiber-reinforced polymers (CFRP) have been widely used for retrofitting and/or strengthening structural elements. However, there are not enough test data to predict the long-term performance of the retrofitted structures exposed to freeze-thawing cycles. This paper presents the results of experimental program undertaken to investigate the effects of freeze-thawing cycling (from-18 to $4^{\circ}C) on the behavior and failure characteristics of reinforced concrete (RC) beams strengthened in shear with CFRP sheet and plate using acoustic emission (AE) technique.