• 제목/요약/키워드: Acoustic Inspection

검색결과 103건 처리시간 0.031초

공장 자동화를 위한 소음 자동 검사 시스템의 개발에 관한 연구 (A study on development of automatic system of acoustic noise detection for realization of factory automation)

  • 이만형;김경천;김정근;정영철;안희태
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.967-970
    • /
    • 1988
  • This paper deals with automatic system of acoustic noise detection for realization of factory automation. The existing inspection process of failure products has mostly been executed in hand by rich-experienced workers. It is difficult to accomplish effectively or systematically the failure test of products owing to the diversality of ill-conditions. But the problem about it must be solved in viewpoint of cost down and factory automation in addition to the reliability of products. The necessity of automatic inspection system to inspect automatically undesirable acoustic noise of products which is one of the kinds of failure is suggested, and the procedure to develope it and the function of each system components are explained briefly.

  • PDF

Guided-Waves-Based Mortar-Filled Steel Pipe Inspection Using EMAT End Wavelet Transform

  • 나원배
    • 한국해양공학회지
    • /
    • 제20권2호
    • /
    • pp.8-15
    • /
    • 2006
  • Guided-waves-based mortar-filled steel pipe inspection is carried out through using EMAT (Electro magnetic acoustic transducer) and wavelet transform. Possibly existing anomalies such as separation (or void) and inclusion are made in the fabricated mortar-fled steel pipes: these anomalies are infected. Since guided waves have the long range inspection capability, EMAT has its own advantages over the conventional PZT (Piezoelectric zirconate titanate), and wavelet transform gives the multi-resolution on time-frequency domain results, the suggested technique gives an alternative way for inspecting mortar-filled steel pipes, which are popularly used for supporting marine structures such as piers, wharfs, moles, and dolphins. Through this study, it is show that the suggested technique is promising for detecting the amounts of separations and inclusions.

PGSFR 가동중검사기술 개발 (Development of In-Service Inspection Techniques for PGSFR)

  • 김회웅;주영상;이영규;박상진;구경회;김종범;김성균
    • 한국압력기기공학회 논문집
    • /
    • 제12권1호
    • /
    • pp.93-100
    • /
    • 2016
  • Since the sodium-cooled fast reactor is operated in a hostile environment due to the use of liquid sodium as its coolant, advanced techniques for in-service inspection are required to periodically verify the integrity of the reactor. This paper presents the development of in-service inspection techniques for Proto-type Generation IV Sodium-cooled Fast Reactor. First, the 10 m long plate-type ultrasonic waveguide sensor has been developed for in-service inspection of reactor internals, and its feasibility was verified through several under-water and under-sodium experiments. Second, the combined inspection system for in-service inspection of ferromagnetic steam generator tubes has been developed. The remote field eddy current testing and magnetic flux leakage testing can be conducted simultaneously by using the developed inspection system, and the detectability was demonstrated through several damage detection experiments. Finally, the electro-magnetic acoustic transducer which can withstand high temperature and be installable in the remote operated vehicle has been developed for in-service inspection of the reactor vessel, and its detectability was investigated through damage detection experiments.

노치가 있는 콘크리트 보에서 균열검출을 위한 음향방출기법의 적용 (Application of Acoustic Emission Technique for Detection of Crack in Notched Concrete Beams)

  • 진치섭;이래철;신동익;권성진
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제3권4호
    • /
    • pp.215-220
    • /
    • 1999
  • Concrete micro-cracks that are grown while the structures are under construction or in service, propagate gradually or rapidly by external forces and environmental effects. As described above, almost concrete structures generally have cracks, so for the safety and durability of structures, studies to detect cracks using nondestructive tests have been treated in great deal. The purpose of this study is to evaluate characteristics of AE signals detected from notched concrete beams bending test with different loading using one of nondestructive test, Acoustic Emission (AE) method. Furthermore this study predicts the location of initial crack and measures direction of crack propagation for on-line monitoring before the crack really grows in structures by using two-dimensional AE source location based on rectangular method with three-point bending test. This will allow efficient maintenance of concrete structures through monitoring of internal cracking based on acoustic emission method.

  • PDF

하계 광양만 주변 해역의 새우조망 어획조사 및 수산자원 음향조사 (Biomass Estimation with a Hydroacoustic Survey and the Shrimp Beam Trawl Fishery in Gwangyanh Bay in Summer)

  • 한인우;오우석;박근창;윤은아;이경훈
    • 한국수산과학회지
    • /
    • 제52권3호
    • /
    • pp.288-297
    • /
    • 2019
  • This study conducted a survey using a sampling inspection method and acoustic technique for continuous monitoring of useful organisms and non-commercial fish species distributed in the water of Gwangyang Bay, and evaluated the marine resources. In June, 2018, 38 species were caught in the shrimp beam trawl, comprising 3,594 marine organisms with a total weight was 65,415.3g. The acoustic survey showed that the nautical area scattering coefficient (NASC; $m^2/n.mile^2$) for the waters of Gwangyang Bay was highest in Transect 15 ($1,655.5m^2/n.mile^2$) and lowest in Transect 1 ($1.3m^2/n.mile^2$). The biomass was estimated to be 2,634.9 tons in the acoustic survey. This indicates that the acoustic survey method detected more fish shoals than the sampling inspection method.

Scanning acoustic microscopy for material evaluation

  • Hyunung Yu
    • Applied Microscopy
    • /
    • 제50권
    • /
    • pp.25.1-25.11
    • /
    • 2020
  • Scanning acoustic microscopy (SAM) or Acoustic Micro Imaging (AMI) is a powerful, non-destructive technique that can detect hidden defects in elastic and biological samples as well as non-transparent hard materials. By monitoring the internal features of a sample in three-dimensional integration, this technique can efficiently find physical defects such as cracks, voids, and delamination with high sensitivity. In recent years, advanced techniques such as ultrasound impedance microscopy, ultrasound speed microscopy, and scanning acoustic gigahertz microscopy have been developed for applications in industries and in the medical field to provide additional information on the internal stress, viscoelastic, and anisotropic, or nonlinear properties. X-ray, magnetic resonance, and infrared techniques are the other competitive and widely used methods. However, they have their own advantages and limitations owing to their inherent properties such as different light sources and sensors. This paper provides an overview of the principle of SAM and presents a few results to demonstrate the applications of modern acoustic imaging technology. A variety of inspection modes, such as vertical, horizontal, and diagonal cross-sections have been presented by employing the focus pathway and image reconstruction algorithm. Images have been reconstructed from the reflected echoes resulting from the change in the acoustic impedance at the interface of the material layers or defects. The results described in this paper indicate that the novel acoustic technology can expand the scope of SAM as a versatile diagnostic tool requiring less time and having a high efficiency.

초음파법에 의한 폭발접합 이종금속 접합품질 판정레벨 설정에 관한 연구 (Ultrasonic Test Criterion for the Explosively Welded Fe-Naval Brass Bonding Quality)

  • 장영권;백영남
    • Journal of Welding and Joining
    • /
    • 제19권1호
    • /
    • pp.40-48
    • /
    • 2001
  • An ultrasonic test method, as a nondestructive test is applied to ensure the clad interface quality assessment. According to the reference codes and standards, not only korea Industrial Standard(KS) but also American Society for Testing and Materials (ASTM) Standard, ultrasonic examination procedures use the pulse-echo, A-scan, back reflection signal drop method and/or side drilled reference hole used to establish the acceptance criteria of clad material test. But the variety of bonding materials and sizes makes it difficult to produce the reference blocks, or thus the criteria. In order to overcome these practical difficulties, new ultrasonic testing criterion is suggested. In this new method, the theoretical interface reflection signal amplitude level is calculated and suggested as an acceptance criteria with the back reflection signal set to 100% FSH(Full Screen Height) which is based on acoustic impedance mismatch at the clad interface for the explosive clad ultrasonic inspection. Applicability of suggested criterion, for the explosive clad Fe-Naval Brass with different bonding quality is confirmed to the pre-existed KS and ASTM specifications and verified by using SEM (Seanning Electron Microscope) micrograph. The results obtained by the suggested method is more conservative than the results according to the KS B 0234 and ASTM A 578 specifications The suggested method could be applicable to any other combination of explosive clad ultrasonic inspection.

  • PDF

Nondestructive inspection of spent nuclear fuel storage canisters using shear horizontal guided waves

  • Choi, Sungho;Cho, Hwanjeong;Lissenden, Cliff J.
    • Nuclear Engineering and Technology
    • /
    • 제50권6호
    • /
    • pp.890-898
    • /
    • 2018
  • Nondestructive inspection (NDI) is an integral part of structural integrity analyses of dry storage casks that house spent nuclear fuel. One significant concern for the structural integrity is stress corrosion cracking in the heat-affected zone of welds in the stainless steel canister that confines the spent fuel. In situ NDI methodology for detection of stress corrosion cracking is investigated, where the inspection uses a delivery robot because of the presence of the harsh environment and geometric constrains inside the cask protecting the canister. Shear horizontal (SH) guided waves that are sensitive to cracks oriented either perpendicular or parallel to the wave vector are used to locate welds and to detect cracks. SH waves are excited and received by electromagnetic acoustic transducers (EMATs) using noncontact ultrasonic transduction and pulse-echo mode. A laboratory-scale canister mock-up is fabricated and inspected using the proposed methodology to evaluate the ability of EMATs to excite and receive SH waves and to locate welds. The EMAT's capability to detect notches from various distances is evaluated on a plate containing 25%-through-thickness surface-breaking notches. Based on the results of the distances at which notch reflections are detectable, NDI coverage for spent nuclear fuel storage canisters is determined.