Guided-Waves-Based Mortar-Filled Steel Pipe Inspection Using EMAT End Wavelet Transform

  • Na Won-Bae (Department of Ocean Engineering, Pukyong National University) ;
  • Kim Jeong-Tae (Department of Ocean Engineering, Pukyong National University) ;
  • Ryu Yeon-Sun (Department of Ocean Engineering, Pukyong National University)
  • Published : 2006.04.01

Abstract

Guided-waves-based mortar-filled steel pipe inspection is carried out through using EMAT (Electro magnetic acoustic transducer) and wavelet transform. Possibly existing anomalies such as separation (or void) and inclusion are made in the fabricated mortar-fled steel pipes: these anomalies are infected. Since guided waves have the long range inspection capability, EMAT has its own advantages over the conventional PZT (Piezoelectric zirconate titanate), and wavelet transform gives the multi-resolution on time-frequency domain results, the suggested technique gives an alternative way for inspecting mortar-filled steel pipes, which are popularly used for supporting marine structures such as piers, wharfs, moles, and dolphins. Through this study, it is show that the suggested technique is promising for detecting the amounts of separations and inclusions.

Keywords

References

  1. Alleyne, D. and Cawley, P. (1995). 'The long range detection of corrosion in pipes using lamb waves'', Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson and D. E. Chimenti eds., Vol 14B, pp 2073-2080, New York, NY, Plenum Press
  2. Chan, C.W. and Cawley, P. (1995). 'Guided waves for the detection of defects in welds in plastic pipes', Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson and D.E. Chimenti eds., New York, NY, Plenum Press. Vol 14B, pp 1537-1544
  3. Cheng, A. and Cheng, A.P. (1999). 'Characterization of layered cylindrical structures using cylindrical waves,' Review of Progress in Quantitative Nondestructive Evaluation, D.O. Thompson and D.E. Chimenti eds., New York, NY, Plenum Press. Vol 18A, pp 223-230
  4. Cho, Y. and Rose, J.L. (2000). 'An Elastodynamic Hybrid Boundary Element Study for Elastic Guided Wave Interactions with a Surface Breaking Defects', International Journal of Solids and Structures, Vol 37, pp 4103-4124 https://doi.org/10.1016/S0020-7683(99)00142-0
  5. Daubechies, I. (1992). Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics
  6. Dixon, S. and Palmer, S.B. (2004). 'Wideband Low Frequency Generation and Detection of Lamb and Rayleigh Waves using Electromagnetic Acoustic Transducers (EMATs)', Ultrasonics, Vol 42, pp 1129-1136 https://doi.org/10.1016/j.ultras.2004.02.019
  7. Green Jr., R.E. (2004). 'Non-contact Ultrasonic Techniques', Ultrasonics, Vol 42, pp 9-16 https://doi.org/10.1016/j.ultras.2004.01.101
  8. Guo, D. and Kundu, T. (2000). 'A new sensor for pipe inspection by lamb waves', Materials Evaluation, Vol 58, pp 991-994
  9. Guo, D. and Kundu, T (2001). 'A new transducer holder mechanism for pipe inspection', Journal of the Acoustical Society of America, Vol 110, pp 303-309 https://doi.org/10.1121/1.1377289
  10. Lanza di Scalea F. and McNamara, J. (2004). 'Measuring High-Frequency Wave Propagation in Railroad Tracks by Joint Time-Frequency Analysis', Journal of Sound and Vibration, Vol 273, pp 637-651 https://doi.org/10.1016/S0022-460X(03)00563-7
  11. Lowe, M J.S., Alleyne, D.N. and Cawley, P. (1998). 'Defect Detection in Pipes using Guided Waves', Ultrasonics, Vol 36, pp 147-154 https://doi.org/10.1016/S0041-624X(97)00038-3
  12. Mallat, S. (1999). A Wavelet Tour of Signal Processing, Academic Press
  13. Maxfield, B., Kuramoto, A. and Hulbert, J.K. (1987). 'Evaluating EMAT designs for selected applications', Materials Evaluation, Vol 45, pp 1166-1183
  14. Mikhani, K., Chaggares, C., Masterson, C., Jastrzebski, M., Dusatko, T., Sinclair, A., Shapoorabadi, R. J., Konrad, A. and Papini, M. (2004). 'Optimal Design of EMAT Transmitters', NDT&E International, Vol 37, pp 181-193 https://doi.org/10.1016/j.ndteint.2003.09.005
  15. Murayama, R., Makiyama, S., Kodama, M. and Taniguchi, Y. (2004). 'Development of an Ultrasonic Inspection Robot using an Electromagnetic Acoustic Transducer for a Lamb Wave and an SH-plate Wave', Ultrasonic, Vol 42, pp 825-829 https://doi.org/10.1016/j.ultras.2004.01.059
  16. Na, W. B. and Kundu T. (2002a). 'Underwater pipeline inspection using guided waves', Transactions ASME-Journal of Pressure Vessel Technology, Vol 124, pp 196-200 https://doi.org/10.1115/1.1466456
  17. Na, W. B. and Kundu, T. (2002b). 'EMAT-Based Inspection of Concrete-Filled Steel Pipes for Internal Voids and Inclusions', Transactions of ASME-Journal of Pressure Vessel Technology, Vol 124, pp 265-272 https://doi.org/10.1115/1.1491271
  18. Na, W. B. and Kundu, T. (2002c). 'A combination of PZT and EMAT for interface inspection', Journal of the Acoustical Society of America, Vol 111, pp 2128-2139 https://doi.org/10.1121/1.1470503
  19. Ogi, H., Hamaguchi, T. and Hirao, M. (2000). 'In-situ monitoring of ultrasonic attenuation during rotating bending fatigue of carbon steel with electromagnetic acoustic resonance', Journal of Alloys and Compounds, Vol 310, pp 436-439 https://doi.org/10.1016/S0925-8388(00)01020-3
  20. Oursler, D.A. and Wagner, J.W. (1995). 'Narrow-band hybrid pulsed laser/EMAT system for non-contact ultrasonic inspection using angled shear waves', Materials Evaluation, Vol 53, pp 593-598
  21. Papadakis, E.P., Oakley, C.G., Selfridge, A. and Maxfield, B. (1999). 'Fabrication and characterization of transducers', Ultrasonic Instruments and Device II, Thurston, R. N. and Pierce A. D. eds., Academic Press pp 43-134
  22. Rose, J.L. (2002). 'A Baseline and Vision of Ultrasonic Guided Wave Inspection Potential', Transactions of the ASME-Journal of Pressure Vessel Technology, Vol 124, pp 273-282 https://doi.org/10.1115/1.1491272
  23. Rose, J.L., Cho, Y. and Ditri, J.L. (1994). 'Cylindrical guided wave leakage due to liquid loading', Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson and D. E. Chimenti eds., New York, NY, Plenum Press Vol 13A, pp 259-266
  24. Sawaragi, K., Salzburger, H.J., Hubschen, G., Enami, K., Kirihigashi, A. and Tachibana, N. (2000). 'Improvement of SH-wave EMAT phased array inspection by new eight segment probes', Nuclear Engineering and Design, Vol 198, pp 153-163 https://doi.org/10.1016/S0029-5493(99)00276-9
  25. Seifried, R., Jacobs, L. J. and Qu, J. (2002). 'Propagation of Guided Waves in Adhesive Bonded Components', NDT&E International, Vol 35, pp 317-328 https://doi.org/10.1016/S0963-8695(01)00056-1
  26. Silva, M.Z., Couyon, R. and Lepoutre, F. (2003). 'Hidden corrosion detection in aircraft aluminum structures using laser ultrasonics and wavelet transform signal analysis', Ultrasonics, Vol 41, pp 301-305 https://doi.org/10.1016/S0041-624X(02)00455-9
  27. Siqueira, M.H.S., Gatts, C.E.N., da Silva, R.R. and Rebello, J.M.A. (2004). 'The Use of Ultrasonic Guided Waves and Wavelet Analysis in Pipe Inspection', Ultrasonics, Vol 41, pp 785-797 https://doi.org/10.1016/j.ultras.2004.02.013
  28. Sripahti, D. (2003). 'Efficient Implementations of Discrete Wavelet Transforms using FPGAs', Master's Thesis, Florida State University
  29. Sung, D.U., Kim, C.G. and Hong, C.S. (2002). 'Monitoring of Impact Damages in Composite Laminates using Wavelet Transform', Composites, Part B, Vol 33, pp 35-43
  30. Vogt, T.K. (2002). 'Determination of Material Properties using Guided Waves', Doctoral Thesis, Imperial College of Science, Technology and Medicine, University of London