• 제목/요약/키워드: Acoustic Fluid

검색결과 302건 처리시간 0.027초

평판 인텐시티 측정을 통한 근접장 음향 인텐시티와 손실 계수 측정법 (Measurement of Near Field Sound Intensity and Loss Factor Using Plate Intensity Measurement)

  • 김용조;김양한
    • 소음진동
    • /
    • 제7권4호
    • /
    • pp.589-596
    • /
    • 1997
  • A energy equation for a thin plate and surrounding fluid is derived. The equation essentially determines the relation between internal loss of thin plate, energy of acoustic radiation, and structure intensity. We attempted to use this relation to measure internal loss of thin plate. The significance of this approach is that internal loss at any point of a thin plate can be measured. The quality of this measure is dicated by the accuracy of associated measurement systems such as structure and acoustic intensity measurements. A strain gauge bridge system has been developed to measure structure intensity of thin plate. Its performance is tested by experiments.

  • PDF

횡등방성 원통 셸에 의한 수중 음파의 공명 산란 (Resonant Scattering of Underwater Acoustic Wave by Transversely Isotropic Cylindrical Shells)

  • 김진연
    • 소음진동
    • /
    • 제7권3호
    • /
    • pp.449-455
    • /
    • 1997
  • A theoretical study is presented for the prediction of the scattering of obliquely incident plane acoustic wave by transversely isotropic cylindrical shells immersed in water. In dorder to illustrate the vailidity of the theory backscattering form functions are compared with the existing results for degenerated problems: the catterings by isotropic shell and transversely isotropic solid cylinder. The unidirectional fiber reinforced boron-aluminum composites are selected as a model of transversely isotropic materials having potential applications in practice. From the resonant scattering analysis of the partial backscattering form functions, the dispersion curves for fluid-borne Stoneley wave, guided wave along the shell, and the lowest three Lamb type waves can be found. The Lamb type dispersions are compared with those of the flat plate. The variation of anisotropy significantly affects the properties of circumferential waves. From these results, it can be possible to identify parametrically the material properties of anisotropic cylindrical targets.

  • PDF

이중점근 근사법을 이용한 조화가진 구조물의 방사소음 예측 (Prediction of the Radiated Noise of a Structure Excited by Harmonic Force Using the Doubly Asymptotic Approximation)

  • 한승진;정우진
    • 한국소음진동공학회논문집
    • /
    • 제27권1호
    • /
    • pp.51-56
    • /
    • 2017
  • This paper presents an approach of predicting the radiated noise due to the structural vibration by internal harmonic forces using the doubly asymptotic approximation (DAA). Acoustic transfer vector is derived from the Helmholtz integral equation and the fluid-structure interaction relation of DAA. Numerical results and analytical results of radiated noise for a cylindrical shell were compared and showed that they were consistent in most of frequencies and radiation directions, but showed errors in some radiated directions in the mid-frequency region. Despite these errors, the prediction method will be suitable for practical radiated noise prediction.

축류형 송풍기 설계 과정에서 공력-음향학적 성능 예측을 위한 전산 프로그램의 개발 (Development of the Computer Program for Predicting the Aero-acoustic Performance in the Design Process of Axial Flow Fan)

  • 정동규;홍순성;이찬
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2000년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.91-98
    • /
    • 2000
  • Developed is a computer program for the prediction of the aero-acoustic performance characteristics such as discharge pressure, efficiency, power and noise level in the basic design step of axial flow fan. The flow field and the aerodynamic performance of fan are analyzed by using the streamline curvature computing scheme with total pressure loss and flow deviation models. Fan noise is assumed to be generated due to the pressure fluctuations induced by wake vortices of fan blades and to radiate via dipole distribution. The vortex-induced fluctuating pressure on blade surface is calculated by combining thin airfoil theory and the predicted flow field data. The predicted aerodynamic performances, sound pressure level and noise directivity patterns of fan by the present computer program are favorably compared with the test data of actual fan. Furthermore, the present computer program is shown to be very useful in optimizing design variables of fan with high efficiency and low noise level and in analyzing their design sensitivities.

  • PDF

비대칭형 보강재 간격에 따른 주기구조물의 SPL모드 해석 (Modal Analysis on SPL of the Periodic Structure depend on Unsymmetrical Beam Space)

  • 김택현;김종태
    • 한국공작기계학회논문집
    • /
    • 제11권1호
    • /
    • pp.52-60
    • /
    • 2002
  • The purpose of this research is to study the vibration and acoustic pressure radiation from a thin isotropic flat plate stiffened by a rectangular array of beams, and excited by a time harmonic point force. These constructions on aircraft and ship structures are often subjected to fiequency dependent pressure fluctuations and forces. Forces from the these excitations induce structural vibrations in a wide range of fiequencies, which may cause such things as acoustic fatigue and internal cabin noise in the aircraft. It is thus important that the response characteristics and vibration modes of such periodic structures be horn. From this theoretical model, the sound pressure levels(SPL) in a semi-infinite fluid(water) bounded by the plate with the variation in the locations of an external time harmonic point farce on the plate can be calculated efficiently using three numerical tools such as the Gauss-jordan method the LU decomposition method md the IMSL numerical package.

액상용기에서 초음파에 의한 열전달촉진 (Enhancement of bent transfer in the liquid bath by ultrasound)

  • 강원종;오율권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.655-658
    • /
    • 2002
  • The present paper investigated the effect of ultrasonic vibrations on the melting process of a phase-change material (PCM). Furthermore, the present study considered constant heat-flux boundary conditions unlike many of the previous researches, which had adopted constant wall-temperature conditions. Therefore in the study, modified dimensionless numbers such as Stefan and Rayleigh were adopted to represent heat transfer results. The experimental results revealed that ultrasonic vibrations accompanied the effects like agitation, acoustic streaming, cavitation, and oscillating fluid motion, accelerating the melting process as much as 2.5 times, compared with the result of natural melting (i. e., the case without ultrasonic vibration). Such effects are believed to be a prime mechanism in the overall melting process when ultrasonic vibrations were applied. Subsequently, energy could be saved by applying the ultrasonic vibrations to the natural melting In addition, various time-wise dimensionless numbers provided a conclusive evidence of the important role of the ultrasonic vibrations on the melting phenomena of the PCM.

  • PDF

박막을 이용한 저주파수 영역 덕트 소음 저감 방법 (Low Frequency Noise Reduction Inside Duct by Using Membrane)

  • 김양한
    • 한국소음진동공학회논문집
    • /
    • 제14권11호
    • /
    • pp.1083-1090
    • /
    • 2004
  • Two noise reduction systems are proposed in order to overcome the geometric restriction of the reactive muffler such as an expansion chamber. First, membrane is installed as a part of a duct wall and an air cavity is covered outside membrane. Second, membrane is installed inside a duct, which gives no volume change of the duct. Structural-acoustic coupling between membrane and fluid inside the cavity and duct causes rapid impedance mismatching and thereby reflected wave. Theoretical prediction is conducted by using modal expansion approach. The results are compared with the experimental results, which show better noise reduction performance than an expansion chamber.

Measurements of Sub- and Super Harmonic Waves at the Interfaces of Fatigue-Cracked CT Specimen

  • Jeong, Hyun-Jo;Barnard, Dan
    • 비파괴검사학회지
    • /
    • 제31권1호
    • /
    • pp.1-10
    • /
    • 2011
  • Nonlinear harmonic waves generated at cracked interfaces are investigated both experimentally and theoretically. A compact tension specimen is fabricated and the amplitude of transmitted wave is analyzed as a function of position along the fatigued crack surface. In order to measure as many nonlinear harmonic components as possible a broadband Lithium Niobate ($LiNbO_3$) transducers are employed together with a calibration technique for making absolute amplitude measurements with fluid-coupled receiving transducers. Cracked interfaces are shown to generate high acoustic nonlinearities which are manifested as harmonies in the power spectrum of the received signal. The first subharmonic (f/2) and the second harmonic (2f) waves are found to be dominant nonlinear components for an incident toneburst signal of frequency f. To explain the observed nonlinear behavior a partially closed crack is modeled by planar half interfaces that can account for crack parameters such as crack opening displacement and crack surface conditions. The simulation results show reasonable agreements with the experimental results.

Axisymmetrical free-vibration analysis of liquid-storage tanks considering the liquid compressibility

  • Cho, Jin-Rae;Lee, Jin-Kyu
    • Structural Engineering and Mechanics
    • /
    • 제13권4호
    • /
    • pp.355-368
    • /
    • 2002
  • In this paper, we address the numerical investigation on the effect of liquid compressibility onto the natural frequency of liquid-filled containers. Traditionally the liquid motion has been treated as an ideal fluid motion. However, from the numerical experiments for the axisymmetrical free-vibration of cylindrical liquid-storage tanks, we found that the relative difference in natural frequencies between ideal and compressible motions becomes remarkable, as the slenderness of tank or the relative liquid-fill height becomes larger. Therefore, in such cases of dynamic systems, the liquid compressibility becomes an important parameter, for the accurate vibration analysis. For the free-vibration analysis of compressible liquid-structure interaction we employed the coupled finite element formulation expressed in terms of the acoustic wave pressure and the structure deformation.

박막을 이용한 저주파수 영역 덕트 소음 저감 방법 (Low frequency noise reduction inside duct by using membrane)

  • 전종훈;김양한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.474-479
    • /
    • 2004
  • Two noise reduction systems are proposed in order to overcome the geometric restriction of the reactive muffler such as an expansion chamber. First, membrane is installed as a part of a duct wall and an air cavity is covered outside membrane. Second, membrane is installed inside a duct, which gives no volume change of the duct. Structural-acoustic coupling between membrane and fluid inside the cavity and duct causes rapid impedance mismatching and thereby reflected wave. Theoretical prediction is conducted by using modal expansion approach. The results are compared with the experimental results, which show better noise reduction performance than an expansion chamber.

  • PDF