• Title/Summary/Keyword: Acidophilic

Search Result 64, Processing Time 0.027 seconds

Bio-dissolution of waste of lithium battery industries using mixed acidophilic microorganisms isolated from Dalsung mine (달성 광산(鑛山)에서 채취(採取)한 혼합(混合) 호산성 균주를 이용(利用)한 폐리튬 밧데리의 바이오 침출(浸出))

  • Mishra, Debaraj;Kim, Dong-Jin;Ahn, Jong-Gwan;Ralph, David E.
    • Resources Recycling
    • /
    • v.17 no.2
    • /
    • pp.30-35
    • /
    • 2008
  • Mixed acidophilic bacteria were approached for leaching of cobalt and lithium from wastes of lithium ion battery industries. The growth substrates for the mixed mesophilic bacteria are elemental sulfur and ferrous ion. Bioleaching of the metal was due to the protonic action of sulfate ion on the metals present in the waste. It was investigated that bioleaching of cobalt was faster than lithium. Bacterial action could leach out about 80 % of cobalt and 20 % of lithium from the solid wastes within 12 days of the experimental period. Higher solid/liquid ratio was found to be detrimental for bacterial growth due to the toxic nature of the metals. At high elemental sulfur concentration, the sulfur powder was observed to be in undissolved form and hence the leaching rate also decreased with increase of sulfur amount.

A cold-active acidophilic endoglucanase of Paenibacillus sp. Y2 isolated from soil in an alpine region

  • Lee, Jae Pil;Seo, Gu-Won;An, Shin-Deuk;Kim, Hoon
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.3
    • /
    • pp.257-263
    • /
    • 2017
  • A cellulolytic strain Y2 was isolated from soil obtained in the Canadian Alpine region. The isolate was identified as Paenibacillus sp. Y2 by 16S rRNA sequencing. When grown in LB medium supplemented with carboxymethyl-cellulose (CMC), CMCase production increased to 122.0% of that observed in LB without CMC. Culture supernatant was concentrated by ultrafiltration and 80% ammonium sulfate precipitates were separated by Hi-Trap Q and CHT-II chromatography. The purified enzyme (EG-PY2) showed a homogeneous single band and the molecular mass was estimated to be 38 kDa by SDS-PAGE. Optimum pH and temperature of the enzyme were 4.5 and $30^{\circ}C$, respectively. The half-life of enzyme activity at 50 was 140.7 min, but the enzyme was drastically inactivated within 5 min at $55^{\circ}C$. The enzyme was highly activated to 135.7 and 126.7% by 5.0 mM of $Cu^{2+}$ or $Mg^{2+}$ ions, respectively, and moderately activated by $Ba^{2+}$ and $Ca^{2+}$ ions, whereas it was inhibited to 76.8% by $Fe^{2+}$, and to ${\leq}50%$ by $Mn^{2+}$, $Co^{2+}$, $Zn^{2+}$, and EDTA. The enzyme was activated to 211.5% in the presence of 0.5 M of NaCl and greatly tolerant to 3.15M of NaCl. The enzyme showed 2.98 times higher ${\beta}$-glucanase activity than CMCase activity. Based on these results, it can be concluded that EG-PY2 is an acidophilic, cold-active, and halotolerant endoglucanase. The authors suggest it is considered to be useful for various industrial applications, such as, fruit juice clarification, acidic deinking processes, high-salt food processing, textile and pulp industries, and for biofuel production from seaweeds.

Acidophilic Tannase from Marine Aspergillus awamori BTMFW032

  • Beena, P.S.;Soorej, M.B.;Elyas, K.K.;Sarita, G. Bhat;Chandrasekaran, M.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.10
    • /
    • pp.1403-1414
    • /
    • 2010
  • Aspergillus awamori BTMFW032, isolated from sea water, produced tannase as an extracellular enzyme under submerged culture conditions. Enzymes with a specific activity of 2,761.89 IU/mg protein, a final yield of 0.51%, and a purification fold of 6.32 were obtained after purification through to homogeneity, by ultrafiltration and gel filtration. SDS-PAGE analyses, under nonreducing and reducing conditions, yielded a single band of 230 kDa and 37.8 kDa, respectively, indicating the presence of six identical monomers. A pI of 4.4 and a carbohydrate content of 8.02% were observed in the enzyme. The optimal temperature was found to be $30^{\circ}C$, although the enzyme was active in the range of $5-80^{\circ}C$. Two pH optima, pH 2 and pH 8, were recorded, although the enzyme was instable at a pH of 8, but stable at a pH of 2.0 for 24 h. Methylgallate recorded maximal affinity, and $K_m$ and $V_{max}$ were recorded at $1.9{\times}10^{-3}$M and 830 ${\mu}Mol$/min, respectively. The impacts of a number of metal salts, solvents, surfactants, and other typical enzyme inhibitors on tannase activity were determined in order to establish the novel characteristics of the enzyme. The gene encoding tannase, isolated from A. awamori, was found to be 1.232 kb, and nucleic acid sequence analysis revealed an open reading frame consisting of 1,122 bp (374 amino acids) of one stretch in the -1 strand. In silico analyses of gene sequences, and a comparison with reported sequences of other species of Aspergillus, indicate that the acidophilic tannase from marine A. awamori differs from that of other reported species.

Novel Antibacterial, Cytotoxic and Catalytic Activities of Silver Nanoparticles Synthesized from Acidophilic Actinobacterial SL19 with Evidence for Protein as Coating Biomolecule

  • Wypij, Magdalena;Ostrowski, Maciej;Piska, Kamil;Wojcik-Pszczola, Katarzyna;Pekala, Elzbieta;Rai, Mahendra;Golinska, Patrycja
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.9
    • /
    • pp.1195-1208
    • /
    • 2022
  • Silver nanoparticles (AgNPs) have potential applications in medicine, photocatalysis, agriculture, and cosmetic fields due to their unique physicochemical properties and strong antimicrobial activity. Here, AgNPs were synthesized using actinobacterial SL19 strain, isolated from acidic forest soil in Poland, and confirmed by UV-vis and FTIR spectroscopy, TEM, and zeta potential analysis. The AgNPs were polydispersed, stable, spherical, and small, with an average size of 23 nm. The FTIR study revealed the presence of bonds characteristic of proteins that cover nanoparticles. These proteins were then studied by using liquid chromatography with tandem mass spectrometry (LC-MS/MS) and identified with the highest similarity to hypothetical protein and porin with molecular masses equal to 41 and 38 kDa, respectively. Our AgNPs exhibited remarkable antibacterial activity against Escherichia coli and Pseudomonas aeruginosa. The combined, synergistic action of these synthesized AgNPs with commercial antibiotics (ampicillin, kanamycin, streptomycin, and tetracycline) enabled dose reductions in both components and increased their antimicrobial efficacy, especially in the case of streptomycin and tetracycline. Furthermore, the in vitro activity of the AgNPs on human cancer cell lines (MCF-7, A375, A549, and HepG2) showed cancer-specific sensitivity, while the genotoxic activity was evaluated by Ames assay, which revealed a lack of mutagenicity on the part of nanoparticles in Salmonella Typhimurium TA98 strain. We also studied the impact of the AgNPs on the catalytic and photocatalytic degradation of methyl orange (MO). The decomposition of MO was observed by a decrease in intensity of absorbance within time. The results of our study proved the easy, fast, and efficient synthesis of AgNPs using acidophilic actinomycete SL19 strain and demonstrated the remarkable potential of these AgNPs as anticancer and antibacterial agents. However, the properties and activity of such particles can vary by biosynthesized batch.

Degradation of Malic Acid by Issatchenkia orientalis KMBL 5774, an Acidophilic Yeast Strain Isolated from Korean Grape Wine Pomace

  • Seo, Sung-Hee;Rhee, Chang-Ho;Park, Heui-Dong
    • Journal of Microbiology
    • /
    • v.45 no.6
    • /
    • pp.521-527
    • /
    • 2007
  • Several yeast strains degrading malic acid as a sole carbon and energy source were isolated from Korean wine pomace after enrichment culture in the presence of malic acid. Among them, the strain designated as KMBL 5774 showed the highest malic acid degrading ability. It was identified as Issatchenkia orientalis based on its morphological and physiological characteristics as well as the nucleotide sequences of the internal transcribed spacer (ITS) 1-5.8S rDNA-ITS II region. Phylogenetic analysis of the ITS I-5.8S rDNA-ITS II sequences showed that the KMBL 5774 is the closest to I. orientalis zhuan 192. Identity of the sequences of the KMBL 5774 was 99.5% with those of I. orientalis zhuan 192. The optimal pH of the media for the growth and malic acid degradation by the yeast was between 2.0 and 3.0, suggesting that the strain is an acidophile. Under the optimized conditions, the yeast could degrade 95.5% of the malic acid after 24 h of incubation at $30^{\circ}C$ in YNB media containing 2% malic acid as a sole carbon and energy source.

Enhancing the Thermal Resistance of a Novel Acidobacteria-Derived Phytase by Engineering of Disulfide BridgesS

  • Tan, Hao;Miao, Renyun;Liu, Tianhai;Cao, Xuelian;Wu, Xiang;Xie, Liyuan;Huang, Zhongqian;Peng, Weihong;Gan, Bingcheng
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1717-1722
    • /
    • 2016
  • A novel phytase of Acidobacteria was identified from a soil metagenome, cloned, overexpressed, and purified. It has low sequence similarity (<44%) to all the known phytases. At the optimum pH (2.5), the phytase shows an activity level of 1,792 μmol/min/mg at physiological temperature (37℃) and could retain 92% residual activity after 30 min, indicating the phytase is acidophilic and acidostable. However the phytase shows poor stability at high temperatures. To improve its thermal resistance, the enzyme was redesigned using Disulfide by Design 2.0, introducing four additional disulfide bridges. The half-life time of the engineered phytase at 60℃ and 80℃, respectively, is 3.0× and 2.8× longer than the wild-type, and its activity and acidostability are not significantly affected.

Cytologic Findings of Hodgkin's Disease with Special Emphasis on Reed-Sternberg Cells and Their Variants (Hodgkin병의 세포학적 검색)

  • Ko, Young-Hyeh;Park, Chan-Pil;Lee, Jung-Dal
    • The Korean Journal of Cytopathology
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 1991
  • Cytologic findings from five cases with variable types of Hodgkln's disease were reviewed with special emphasis on the Reed-Sternberg (R-S) cells and their variants. Typical R-S and Hodgkin's cells were mono- or binucleated, and nuclei had rounded smooth contour, Acidophilic prominent nucleoli with perinucleolar halo were conspicuous in comparison to typical Reed-Sternberg cells, L & H (lymphocytic and histiocytic) cells in the lymphocyte predominant type tended to show pop-corn like irregular nuclear contour and to lack the prominent nucleoli. Lacunar cells in the nodular sclerosis type had multilobated nuclei with prominent acidophilic nucleoli. There was no prominent perinucleolar halo in L & H and lacunar cells. In conjuction with the number of Reed-Sternberg cells and back ground findings observed on the smears, the characteristic features of R-S cells and their variants allowed to make typing of Hodgkin's disease.

  • PDF

Improved Thermal Stability of a Novel Acidophilic Phytase

  • Byung Sam Son;So Hyeong Kim;Hye-Young Sagong;Su Rin Lee;Eun Jung Choi
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.5
    • /
    • pp.1119-1125
    • /
    • 2024
  • Phytase increases the availability of phosphate and trace elements by hydrolyzing the phosphomonoester bond in phytate present in animal feed. It is also an important enzyme from an environmental perspective because it not only promotes the growth of livestocks but also prevents phosphorus contamination released into the environment. Here we present a novel phytase derived from Turicimonas muris, TmPhy, which has distinctive structure and properties compared to other previously known phytases. TmPhy gene expressed in the Pichia system was confirmed to be 41 kDa in size and was used in purified form to evaluate optimal conditions for maximum activity. TmPhy has a dual optimum pH at pH3 and pH6.8 and exhibited the highest activity at 70℃. However, the heat tolerance of the wildtype was not satisfactory for feed application. Therefore, random mutation, disulfide bond introduction, and N-terminal mutation were performed to improve the thermostability of the TmPhy. Random mutation resulted in TmPhyM with about 45% improvement in stability at 60℃. Through further improvements, a total of three mutants were screened and their heat tolerance was evaluated. As a result, we obtained TmPhyMD1 with 46.5% residual activity, TmPhyMD2 with 74.1%, and TmPhyMD3 with 66.8% at 80℃ heat treatment without significant loss of or with increased activity.

The Characteristic of Selective Attachment and Bioleaching for Pyrite Using Indigenous Acidophilic Bacteria at $42^{\circ}C$ ($42^{\circ}C$에서 토착호산성박테리아의 황철석 표면에 대한 선택적 부착과 용출 특성)

  • Park, Cheon-Young;Kim, Soon-Oh;Kim, Bong-Ju
    • Economic and Environmental Geology
    • /
    • v.43 no.2
    • /
    • pp.109-121
    • /
    • 2010
  • The bioleaching experiment under $42^{\circ}C$ was effectively carried out to leach the more valuable element ions from the pyrite in the Gangyang mine waste. Bacteria can survive at this temperature, as indigenous acidophilic bacteria were collected in the Hatchobaru acidic hot spring, in Japan. To enhance the bacterial activity, yeast extract was added to the pyrite-leaching medium. The indigenous acidophilic bacteria appeared to be rod-shaped in the growth-medium which contained elemental sulfur and yeast extract. The rod-shaped bacteria ($0.7\times2.6\;{\mu}m$, $0.6\times7\;{\mu}m$, $0.8\times5\;{\mu}m$ and $0.7\times8.4\;{\mu}m$) were attached to the pyrite surface. The colonies of the rod-shaped bacteria were selectively attached to the surroundings of a hexagonal cavity and the inner wall of the hexagonal cavity, which developed on a pyrite surface. Filament-shaped bacteria ranging from $4.92\;{\mu}m$ to $10.0\;{\mu}m$ in length were subsequently attached to the surrounding cracks and inner wall of the cracks on the pyrite surface. In the XRD analysis, the intensity of (111), (311), (222) and (320) plane on the bacteria pyrite sample relatively decreased in plane on the control pyrite sample, whereas the intensity of (200), (210) and (211) increased in these samples. The microbiological leaching content of Fe ions was found to be 3.4 times higher than that of the chemical leaching content. As for the Zn, microbiological leaching content, it was 2 times higher than the chemical leaching content. The results of XRD analysis for the bioleaching of pyrite indicated that the indigenous acidophilic bacteria are selectively attacked on the pyrite specific plane. It is expected that the more valuable element ions can be leached out from the mine waste, if the temperature is increased in future bioleaching experiments.