Browse > Article

Degradation of Malic Acid by Issatchenkia orientalis KMBL 5774, an Acidophilic Yeast Strain Isolated from Korean Grape Wine Pomace  

Seo, Sung-Hee (Department of Life and Food Sciences, College of Agriculture and Life Sciences, Kyungpook National University)
Rhee, Chang-Ho (Department of Life and Food Sciences, College of Agriculture and Life Sciences, Kyungpook National University)
Park, Heui-Dong (Department of Life and Food Sciences, College of Agriculture and Life Sciences, Kyungpook National University)
Publication Information
Journal of Microbiology / v.45, no.6, 2007 , pp. 521-527 More about this Journal
Abstract
Several yeast strains degrading malic acid as a sole carbon and energy source were isolated from Korean wine pomace after enrichment culture in the presence of malic acid. Among them, the strain designated as KMBL 5774 showed the highest malic acid degrading ability. It was identified as Issatchenkia orientalis based on its morphological and physiological characteristics as well as the nucleotide sequences of the internal transcribed spacer (ITS) 1-5.8S rDNA-ITS II region. Phylogenetic analysis of the ITS I-5.8S rDNA-ITS II sequences showed that the KMBL 5774 is the closest to I. orientalis zhuan 192. Identity of the sequences of the KMBL 5774 was 99.5% with those of I. orientalis zhuan 192. The optimal pH of the media for the growth and malic acid degradation by the yeast was between 2.0 and 3.0, suggesting that the strain is an acidophile. Under the optimized conditions, the yeast could degrade 95.5% of the malic acid after 24 h of incubation at $30^{\circ}C$ in YNB media containing 2% malic acid as a sole carbon and energy source.
Keywords
acidophilic yeast; grape; malic acid degradation; Issatchenkia orientalis;
Citations & Related Records

Times Cited By Web Of Science : 8  (Related Records In Web of Science)
Times Cited By SCOPUS : 7
연도 인용수 순위
1 Corte-Real, M. and C. Leao. 1990. Transport of malic acid and other dicarboxylic acids in the yeast Hansenula anomala. Appl. Environ. Microbiol. 56, 1109-1113   PUBMED
2 Corte-Real, M. and C. Leao. 1992. Deacidification of grape juice with derepressed mutants of the yeast Hansenula anomala. Appl. Microbiol. Biotechnol. 36, 663-666
3 Fuck, E., G. Stark, and F. Radler. 1973. Malic acid metabolism in Saccharomyces II. Partial purification and characteristics of a 'malic' enzyme. Arch. Mikrobiol. 89, 223-231   DOI
4 Gao, C. and G.H. Fleet. 1995. Degradation of malic and tartaric acids by high density cell suspensions of wine yeasts. Food Microbiol. 12, 65-71   DOI   ScienceOn
5 Granchi, L., M. Bosco, and M. Vicenzini. 1999. Rapid detection and quantification of yeast species during spontaneous wine fermentation by PCR-RFLP analysis of the rDNA ITS region. J. Appl. Microbiol. 87, 949-956   DOI   ScienceOn
6 Henick-Kling, T. 1993. Malolactic fermentation, p. 289-326. In G.H. Fleet (ed.), Wine microbiology and biotechnology. Harwood Academic, Chur, Switzerland
7 Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-120   DOI
8 Las Heras-Viazquez, F.J., L. Mingorance-Cazorla, J.M. Clemente- Jimenez, and F. Rodriguez-Vico. 2003. Identification of yeast species from orange fruit and juice by RFLP and sequence analysis of the 5.8S rRNA gene and internal transcribed spacers. FEMS Yeast Res. 3, 3-9   DOI   PUBMED
9 Pretorius, I.S. 2000. Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. Yeast 16, 675-729   DOI   ScienceOn
10 Rodriquez, S.B. and R.J. Thornton. 1989. A malic acid-dependent mutant of Schizosaccharomyces malidevorans. Arch. Microbiol. 152, 564-566   DOI
11 Saayman, M., H.J.J. Van Vuuren, W.H. Van Zyl, and M. Viljoen- Bloom. 2000. Differential uptake of fumarate by Candida utilis and Schizosaccharomyces pombe. Appl. Microbiol. Biotechnol. 54, 792-798   DOI
12 Schwartz, H. and F. Radler. 1988. Formation of L(-)malate by Saccharomyces cerevisiae during fermentation. Appl. Microbiol. Biotechnol. 27, 553-560   DOI
13 Thornton, R.J. and S.B. Rodriguez. 1996. Deacidification of red and white wines by a mutant of Schizosaccharomyces malidevorans under commercial winemaking conditions. Food Microbiol. 13, 475-482   DOI   ScienceOn
14 Volschenk, H., M. Viljoen, J. Grobler, B. Petzold, F. Bauer, R.E. Subden, R.A. Young, A. Lonvaud, M. Denayrolles, and H.J.J. Van Vuuren. 1997. Engineering pathways for malate degradation in Saccharomyces cerevisiae. Nat. Biotechnol. 15, 253-257   DOI   ScienceOn
15 Wibowo, D., R. Eschenbruch, C.R. Davis, G.H. Fleet, and T.H. Lee. 1985. Occurrence and growth of lactic acid bacteria in wine: a review. Am. J. Enol. Vitic. 24, 1-4
16 Delcourt, F., P. Taillandier, F. Vidal, and P. Strehaiano. 1995. Influence of pH, malic acid and glucose concentrations on malic acid consumption by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 43, 321-324   DOI
17 Rodriquez, S.B. and R.J. Thornton. 1990. Factors influencing the utilization of L-malate by yeasts. FEMS Microbiol. Lett. 72, 17-22
18 Baranowski, K. and F. Radler. 1984. The glucose-dependent transport of L-malate in Zygosaccharomyces bailii. Antonie Van Leeuwenhoek 50, 329-340   DOI
19 Kurtzman, C.P. 1998. Issatchenkia Kudryavtsev emend. Kurtzman, Smiley & Johnson, p. 221-226. In C.P. Kurtzman and J.W. Fell (eds.), The yeasts, a taxonomic study, 4th ed. Elsevier Science B.V., Amsterdam
20 Beelman, R.B. and J.F. Gallander. 1979. Wine deacidification. Adv. Food Res. 25, 1-53   DOI
21 Ansanay, V., S. Dequin, C. Camarasa, V. Schaeffer, J. Grivet, B. Blondin, J. Salmon, and P. Barre. 1996. Malolactic fermentation by engineered Saccharomyces cerevisiae as compared with engineered Schizosaccharomyces pombe. Yeast 12, 215-225   DOI   ScienceOn
22 Goodban, A.E. and J.B. Stark. 1957. Rapid method for determination of malic acid. Anal. Chem. 29, 283-287   DOI
23 Subden, R.E., A. Krizus, C. Osothsilp, M. Viljoen, and H.J.J. Van Vuuren. 1998. Mutational analysis of the malate pathways in Schizosaccharomyces pombe. Food Res. Int. 31, 37-42   DOI   ScienceOn
24 Taillandier, P. and P. Strehaiano. 1991. The role of L-malic acid in the metabolism of Schizosaccharomyces pombe: substrate consumption and cell growth. Appl. Microbiol. Biotechnol. 35, 541-543
25 Gallander, J.F. 1977. Deacidification of eastern table wines with Schizosaccharomyces pombe. Am. J. Enol. Vitic. 28, 65-68
26 Queiros, O., M. Casal, S. Althoff, P. Morades-Ferreira, and C. Leao. 1998. Isolation and characterization of Kluyveromyces marxianus mutants deficient in malate transport. Yeast 14, 401-407   DOI   ScienceOn
27 Benda, I. and A. Schmitt. 1969. Acid reduction in must by various strains of the genus Schizoaccharomyces. Weinberg Keller 16, 71-83
28 Okuma, Y., A. Endo, H. Iwasaki, Y. Ito, and S. Goto. 1986. Isolation and properties of ethanol-using yeasts with acid and ethanol tolerance. J. Ferment. Technol. 64, 379-382   DOI   ScienceOn
29 Osothsilp, C. and R.E. Subden. 1986. Malate transport in Schizosaccharomyces pombe. J. Bacteriol. 168, 1439-1443   DOI   PUBMED
30 Thompson, J.D., T.J. Gibson, F. Plewniak, F. Jeanmougin, and D.G. Higgens. 1997. The CLUSTAL X windows interface, flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876-4882
31 Clemente-Jimenez, J.M., L. Mingorance-Cazorla, S. Martinez- Rodriguez, F.J.L. Heras-Viazquez, and F. Rodriguez-Vico. 2004. Molecular characterization and oenological properties of wine yeasts isolated during spontaneous fermentation of six varieties of grape must. Food Microbiol. 21, 149-155   DOI   ScienceOn
32 Saitou, N., M. Nei, and L.S. Lerman. 1987. The neighbor-joining method, a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425   PUBMED
33 Cassio, F. and C. Leao. 1993. A comparative study on the transport of L-malic acid and other short-chain carboxylic acids in the yeast Candida utilis: evidence for a general organic acid permease. Yeast 9, 743-752   DOI   ScienceOn
34 Barnett, J.A. and H.L. Kornberg. 1960. The utilisation by yeast of acids of the tricarboxylic acid cycle. J. Gen. Microbiol. 23, 65-82   DOI   PUBMED
35 Ruffner, H.P. 1982. Metabolism of tartaric and malic acids in Vitis. Vitis 21, 247-259
36 Ness, F., F. Lavallee, D. Dubourdieu, M. Aigle, and L. Dulan. 1993. Identification of yeast strains using the polymerase chain reaction. J. Sci. Food Agric. 62, 89-94   DOI   ScienceOn
37 Rankine, B.C. 1966. Decomposition of L-malic acid by wine yeasts. J. Sci. Food Agric. 17, 312-316   DOI
38 Torija, M.J., N. Rozes, M. Poblet, J.M. Guillamon, and A. Mas. 2001. Yeast population dynamics in spontaneous fermentations: comparison between two different wine-producing areas over a period of three years. Antonie Van Leeuwenhoek 79, 345-352   DOI   ScienceOn
39 Radler, F. 1993. Yeasts-metabolism of organic acids, p. 165-182. In G.H. Fleet (ed.), Wine Microbiology and Biotechnology. Harwood Academic, Chur, Switzerland
40 Rosini, G. and M. Ciani. 1993. Influence of sugar type and level on malate metabolism of immobilized Schizosaccharomyces pombe cells. Am. J. Enol. Vitic. 44, 113-117
41 Taillandier, P., J.P. Riba, and P. Strehaiano. 1988. Malate utilization by Schizosaccharomyces pombe. Biotechnol. Lett. 10, 469-472   DOI
42 Kuczynski, J.T. and F. Radler. 1982. The anaerobic metabolism of malate of Saccharomyces bailii and the partial purification and characterization of malic enzyme. Arch. Microbiol. 131, 266-270   DOI
43 Munyon, J.R. and C.W. Nagel. 1977. Comparison of methods of deacidification of musts and wines. Am. J. Enol. Vitic. 28, 79-87
44 Park, H.D., S.H. Kim, J.H. Shin, and I.K. Rhee. 1999. Genetic analysis of alcohol yeasts from Korean traditional liquor by polymerase chain reaction. J. Microbiol. Biotechnol. 9, 744-750
45 Pines, O., S. Even-Ram, N. Elnathan, E. Battat, O. Aharonov, D. Gibson, and I. Goldberg. 1996. The cytosolic pathway of L-malic acid synthesis in Saccharomyces cerevisiae: role of fumarase. Appl. Microbiol. Biotech. 46, 393-399
46 Magyar, I. and I. Panyik. 1989. Biological deacidification of wine with Schizosaccharomyces pombe entrapped in Ca-alginate gel. Am. J. Enol. Vitic. 40, 233-240
47 Pines, O., S. Shemesh, E. Battat, and I. Goldberg. 1997. Overexpression of cytosolic malate dehydrogenase (MDH2) causes overproduction of specific organic acids in Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 48, 248-255   DOI
48 Snow, P.G. and J.F. Gallander. 1979. Deacidification of white table wines through partial fermentation with Schizosaccharomyces pombe. Am. J. Enol. Vitic. 30, 45-48
49 Yokotsuka, K., A. Otaki, A. Naitoh, and H. Tanaka. 1993. Controlled simultaneous deacidification and alcohol fermentation of a high-acid grape must using two immobilized yeasts, Schizosaccharomyces pombe and Saccharomyces cerevisiae. Am. J. Enol. Vitic. 44, 371-377
50 Osothsilp, C. 1987. Genetic and biochemical studies of malic acid metabolism in Schizosaccharomyces pombe. Ph. D. thesis. University of Guelph, Guelph, Ontario, Canada
51 Volschenk, H., M. Viljoen-Bloom, R.E. Subden, and H.J.J. Van Vuuren. 2001. Malo-ethanolic fermentation in grape must by recombinant strains of Saccharomyces cerevisiae. Yeast 18, 963-970   DOI   ScienceOn
52 Ramon-Portugal, F., I. Seiller, P. Taillandier, J.L. Favarel, F. Nepveu, and P. Strehaiano. 1999. Kinetics of production and consumption of organic acids during alcoholic fermentation by Saccharomyces cerevisiae. Food Technol. Biotechnol. 37, 235-240
53 Corte-Real, M., C. Leao, and N. Van Uden. 1989. Transport of L-malic acid and other dicarboxylic acids in the yeast Candida sphaerica. Appl. Environ. Microbiol. 31, 551-555
54 Altschul, S.F., T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D.J. Lipman. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402   DOI
55 Amador, P., F. Borges, and M. Corte-Real. 1996. Biochemical characterization of a mutant of the yeast Pichia anomala derepressed for malic acid utilization in the presence of glucose. FEMS Microbiol. Lett. 141, 227-231   DOI
56 Fatichenti, F., G.A. Farris, P. Deiana, and S. Ceccarelli. 1984. Malic acid production and consumption by selected Saccharomyces cerevisiae under anaerobic and aerobic conditions. Appl. Microbiol. Biotechnol. 19, 427-429   DOI