• Title/Summary/Keyword: Acidification

Search Result 464, Processing Time 0.028 seconds

Environmental Impacts on Concentrate Feed Supply Systems for Japanese Domestic Livestock Industry as Evaluated by a Life-cycle Assessment Method

  • Kaku, K.;Ogino, A.;Ikeguchi, A.;Osada, T.;Shimada, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.7
    • /
    • pp.1022-1028
    • /
    • 2005
  • The objectives of this study were to evaluate and compare the environmental load of two different concentrate feed supply systems to the Japanese domestic livestock industry using the Life-cycle Assessment (LCA) method. The current system was defined as that requiring 11.469 million tons of corn imported from the US by sea transport and supplied as concentrate feed to the Japanese domestic livestock industry. The new system proposed by Kaku et al. in 2004 was defined as where 802,830 tons of US imported corn would not be planted in US and would be replaced by barley planted in 278 thousand ha of Japanese domestic land left fallow for the past year. In this case, 909,000 tons of domestic harvest barley would have been supplied as concentrate feed to the Japanese domestic livestock industry in 2000. The activities taken into account within the two system boundaries were three stages: concentrate feed production, feed transportation and gas emission from the soil by chemical fertilizer. Finished compost was regarded as organic fertilizer and was put instead of chemical fertilizers within the system boundary. Adoption of this new concentrate feed supply system by the Japanese domestic livestock industry could reduce 78,462 tons $CO_2$-equivalents of global warming potential, 347 tons $SO_2$-equivalents of acidification potential, 54 tons $PO_4$-equivalents of eutrophication potential and 0.842 million GJ as energy consumption below 2,000 levels. This LCA study comparing two Japanese domestic livestock concentrate feed supply systems showed that the stage of feed transport contributed most to global warming and the stage of emission from the soil contributed most to acidification and eutrophication. The Japanese domestic livestock industry could participate in emissions trading with $CO_2$-equivalents reduced by shifting from some imported US corn as a concentrate feed to domestic barley planted in land left fallow. In that case the Japanese government could launch emissions trading in accordance with Kyoto Protocol in the future.

Seasonal Composition Characteristics of TSP and PM2.5 Aerosols at Gosan Site of Jeju Island, Korea during 2008-2011

  • Kim, Won-Hyung;Hwang, Eun-Yeong;Ko, Hee-Jung;Kang, Chang-Hee
    • Asian Journal of Atmospheric Environment
    • /
    • v.7 no.4
    • /
    • pp.217-226
    • /
    • 2013
  • The collection of TSP and $PM_{2.5}$ aerosols has been made at the Gosan Site of Jeju Island during 2008-2011, and their ionic and elemental species were analyzed, in order to examine the seasonal variation and characteristics of aerosol compositions. The anthropogenic components ($NH_4{^+}$, $nss-SO_4{^{2-}}$, $NO_3{^-}$, S, Zn, Pb) and the soil components ($nss-Ca^{2+}$, Al, Fe, Ca) showed high concentrations in spring as the prevailing westerly wind, but the concentrations of the sea-salt components ($Na^+$, $Cl^-$) were high in winter. In TSP, the neutralization by $NH_3$ increased in summer, but the neutralization by $CaCO_3$ increased in spring and fall seasons. The organic acids ($HCOO^-$, $CH_3COO^-$) contributed to the acidification of the aerosols by only 5.0%, so the acidification could be mostly contributed by the inorganic acids ($SO_4{^{2-}}$, $NO_3{^-}$). From the examination of the source origins by factor analysis, the compositions of TSP were influenced by the order of soil > anthropogenic > marine, on the other hand, those of $PM_{2.5}$ were by the order of anthropogenic > marine > soil. The backward trajectory analyses showed that the concentrations of $NH_4{^+}$, $nss-SO_4{^{2-}}$, $NO_3{^-}$ and $nss-Ca^{2+}$ increased highly when the air masses had moved from China continent into Gosan area of Jeju Island.

Effect of Different Commercial Oligosaccharides on the Fermentation Properties in Kefir during Fermentation

  • Oh, Nam Su;Lee, Hyun Ah;Myung, Jae Hee;Lee, Ji Young;Joung, Jae Yeon;Shin, Yong Kook;Baick, Seung Chun
    • Food Science of Animal Resources
    • /
    • v.33 no.3
    • /
    • pp.325-330
    • /
    • 2013
  • Kefir is traditional fermented milk produced by various lactic acid bacteria (LAB) and yeast, which produce lactic acid, ethanol, carbon dioxide, and other flavor compounds. The purpose of this study was to evaluate the effects of different commercial oligosaccharides, such as maltotriose, fructooligosaccharide (FOS), galactooligosaccharide (GOS), and isomaltooligosaccharide (IMO), on the fermentation properties of kefir. First, we determined the acidification kinetic parameters, such as $V_{max}$, $t_{max}$(h), $t_{pH5.0}$(h), and $t_f$(h) of fermented milk supplemented with 4% (w/w) of different oligosaccharides. The probiotic survival and chemical composition (pH, organic acids profile, and ethanol content) of kefir during fermentation were also measured. Compared to control fermentation, all oligosaccharides increased acidification rate and reduced the time to complete fermentation (pH 4.7). The addition of FOS, in particular, resulted in the lowest $t_f$(h) and the highest populations of LAB and yeast during fermentation. All oligosaccharides increased ethanol production during fermentation. Further, significant differences were observed in the formation rates of six organic acids during fermentation. This study provided comparative data on the properties of commercial oligosaccharides for kefir manufacturing. Consequently, FOS especially had the potential for adequate and effective oligosaccharides in commercial kefir for the improvement of cost- and time-effectiveness.

Assessment of the Soil Quality of Chonan City using Soil Pollution Index (토양오염지표에 의한 천안시 토양환경 평가)

  • 장인성;정창모;임계규
    • Journal of Korea Soil Environment Society
    • /
    • v.4 no.2
    • /
    • pp.185-192
    • /
    • 1999
  • To assess the soil quality of Chonan City, soil analyses were conducted according to the 14 different sampling sites. The soil pH of the agricultural area near the expressway was lower than that of the other farming area, which indicated that this acidification was probably attributed to the acid rain caused by the traffic exhaust gas such as SOx and NOx. Acidification was more severe in the dry farming area than in the rice paddy area. All concentration of 6 different heavy metals (As, Cu, Cd, $Cr^{6+}$, Hg, Pb) and organic contaminants (cyanide, organic-p, PCBs, phenols) were found to be lower than the standard of soil pollution. The concentration of BTEX also lower than the standard of soil pollution. An assessment using the SPI (Soil Pollution Index). which was developed to estimate an overall soil quality, was performed. Each SPC (Soil Pollution Score) were evaluated with the results of the data from this study. The soil quality of most area of Chonan City was determined to Class 1 , which indicated that the soil was healthy.

  • PDF

pH Changes in the Rhizosphere Soil of Pokeberry (미국자리공의 근권 토양산성도의 변화)

  • 박용목;박범진;최기룡
    • The Korean Journal of Ecology
    • /
    • v.22 no.1
    • /
    • pp.7-11
    • /
    • 1999
  • The measurement of pH in the rhizosphere soil was conducted to clarify whether the growth of pokeberry plants affect the acidity of rhizosphere soil in two environmentally contrasting area Ulsan and Chongju city. The rhizosphere pH between 5.25 and 5.33 was shown in the pokeberry stand at Mt. Boomo located at Chongju. The rhizosphere pH of pokeberry stands at Mt. Bongdae, Mt. Sinsun and Mt. Totchil was below 5.0, and did not differ with depth and distance from the main axis of root. At Mt. Bongdae, however, the pH in the rhizosphere soil was significantly changed with soil depths though that was not changed horizontally. The rhizosphere pH at top soil was lower than that at subsoil, which indicates the fact that soil acidification at Mt. Bongdae was not caused by pokeberry plants. Furthermore, the rhizosphere pH did not change with the growth of pokeberry plants. These results indicate that the hypothesis that pokeberry plants acidify local soil environment should be reconsidered.

  • PDF

Development of Life Cycle Inventory (LCI) Database for Production of Liquid CO2 (액체 이산화탄소의 전과정목록(LCI) DB 구축에 관한 연구)

  • Lee, Soo-Sun;Kim, Young Sil;Ahn, Joong Woo
    • Clean Technology
    • /
    • v.21 no.1
    • /
    • pp.33-38
    • /
    • 2015
  • In this research, life cycle inventory database (LCI DB) was developed for liquid CO2 employing life cycle assessment (LCA) methodology. As are result of characterization and normalization process, production of liquid CO2 puts on environmental impact in the order of resource depletion, global warming, acidification, eutrophication and photochemical oxidation, and among a wide variety of input, electricity contributes in most of the impact categories. Air emission plays a key role in the acidification and eutrophication while ammonia affects most on the ozone depletion. It is anticipated that development of liquid CO2 LCI DB makes it possible for national environmental strategies to be more activated including environmental labeling scheme.

Energy production from organic waste by anaerobic treatment (I) : Hydrogen production from food waste (혐기성 처리에 의한 유기성 폐기물 에너지화 (I) : 음식폐기물의 수소화)

  • Han, Sun-Kee
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.1
    • /
    • pp.102-108
    • /
    • 2011
  • Characteristics of hydrogen production from various food wastes in anaerobic batch reactors were evaluated to assess the energy potential of organic wastes. Organic wastes which were used in this study were scallion as vegetable, apple as fruit, rice as grain and pork as meat. Ultimate hydrogen yield of scallion, apple, rice and pork were 0.46, 0.47, 0.62 and $0.05mol\;H_2/mol\;hexose$, respectively. On the other hand, hydrogen production rates of scallion, apple, rice and pork were 0.013, 0.021, 0.014 and $0.005mol\;H_2/mol\;hexose/h$, respectively. These results indicated that anaerobic hydrogen fermentation from food waste except for meat was effective in removing organic material as well as producing renewable energy. Volatile fatty acids increased as hydraulic retention time was increased. In the hydrogen fermentation, acidification degree of rice was measured as the highest rate of 75.8% whereas pork was found as the lowest rate of 35.2%.

A novel combination of sodium metabisulfite and a chemical mixture based on sodium benzoate, potassium sorbate, and sodium nitrite for aerobic preservation of fruit and vegetable discards and lactic acid fermentation in a total mixed ration for ruminants

  • Ahmadi, Farhad;Lee, Won Hee;Kwak, Wan Sup
    • Animal Bioscience
    • /
    • v.34 no.9
    • /
    • pp.1479-1490
    • /
    • 2021
  • Objective: Our recent findings confirmed the effectiveness of sodium metabisulfite (SMB) in controlling the growth of undesirable microorganisms in fruit and vegetable discards (FVD); however, lactic acid bacteria (LAB) are susceptible to its antibacterial effects. Two series of experiments were conducted to enable the survivability of LAB during silage fermentation of a total mixed ration (TMR) containing SMB-treated FVD. Methods: In Exp. 1, the objective was to isolate a strain of LAB tolerable to the toxic effect of SMB. In Exp. 2, the SMB load was minimized through its partial replacement with a chemical mixture (CM) based on sodium benzoate (57%), potassium sorbate (29%), and sodium nitrite (14%). FVD was treated with SMB + CM (2 g each/kg biomass) and added to the TMR at varying levels (0%, 10%, or 20%), with or without KU18 inoculation. Results: The KU18 was screened as a presumptive LAB strain showing superior tolerance to SMB in broth medium, and was identified at the molecular level using 16S rRNA gene sequence analysis as Lactobacillus plantarum. Inoculation of KU18 in TMR containing SMB was not successful for the LAB development, biomass acidification, and organoleptic properties of the resultant silage. In Exp. 2, based on the effectiveness and economic considerations, an equal proportion of SMB and CM (2 g each/kg FVD) was selected as the optimal loads for the subsequent silage fermentation experiment. Slight differences were determined in LAB development, biomass acidification, and sensorial characteristics among the experimental silages, suggesting the low toxicity of the preservatives on LAB growth. Conclusion: Although KU18 strain was not able to efficiently develop in silage mass containing SMB-treated FVD, the partial substitution of SMB load with the CM effectively alleviated the toxic effect of SMB and allowed LAB development during the fermentation of SMB + CM-treated FVD in TMR.

Effects of organic amendments on lettuce (Lactuca sativa L.) growth and soil chemical properties in acidic and non-acidic soils

  • Yun-Gu Kang;Jun-Yeong Lee;Jun-Ho Kim;Taek-Keun Oh;Yeo-Uk Yun
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.713-721
    • /
    • 2023
  • Soil acidification challenges global food security by adversely influences soil fertility and agricultural productivity. Carbonized agricultural residues present a sustainable and ecofriendly way to recycle agricultural waste and mitigate soil acidification. We evaluated the effects of organic amendments on lettuce growth and soil chemical properties in two soils with different pH levels. Carbonized rice husk was produced at 600℃ for 30 min and rice husk was treated at 1% (w·w-1). Carbonized rice husk increased soil pH, electrical conductivity, total carbon content, and nitrogen content compared with untreated and rice husk treatments. Furthermore, this study found that lettuce growth positively correlated with soil pH, with increasing soil pH up to pH 6.34 resulting in improved lettuce growth parameters. Statistical correlation analysis also supported the relationship between soil pH and lettuce growth parameters. The study findings showed that the use of carbonized rice husk increased the constituent elements of lettuce, such as carbon, nitrogen, and phosphate content. The potassium content of lettuce followed a similar trend; however, was higher in acidic soil than that in non-acidic soil. Therefore, improving the pH of acidic soil is essential to enhance agricultural productivity. It is considered advantageous to use agricultural residues following pyrolysis to improve soil pH and agricultural productivity.

Extracellular Acidification Augments NLRP3-Mediated Inflammasome Signaling in Macrophages

  • Byeong Jun Chae;Kyung-Seo Lee;Inhwa Hwang;Je-Wook Yu
    • IMMUNE NETWORK
    • /
    • v.23 no.3
    • /
    • pp.23.1-23.17
    • /
    • 2023
  • Inflammation is a series of host defense processes in response to microbial infection and tissue injury. Inflammatory processes frequently cause extracellular acidification in the inflamed region through increased glycolysis and lactate secretion. Therefore, the immune cells infiltrating the inflamed region encounter an acidic microenvironment. Extracellular acidosis can modulate the innate immune response of macrophages; however, its role for inflammasome signaling still remains elusive. In the present study, we demonstrated that macrophages exposed to an acidic microenvironment exhibited enhanced caspase-1 processing and IL-1β secretion compared with those under physiological pH. Moreover, exposure to an acidic pH increased the ability of macrophages to assemble the NLR family pyrin domain containing 3 (NLRP3) inflammasome in response to an NLRP3 agonist. This acidosis-mediated augmentation of NLRP3 inflammasome activation occurred in bone marrow-derived macrophages but not in bone marrow-derived neutrophils. Notably, exposure to an acidic environment caused a reduction in the intracellular pH of macrophages but not neutrophils. Concordantly, macrophages, but not neutrophils, exhibited NLRP3 agonist-mediated translocation of chloride intracellular channel protein 1 (CLIC1) into their plasma membranes under an acidic microenvironment. Collectively, our results demonstrate that extracellular acidosis during inflammation can increase the sensitivity of NLRP3 inflammasome formation and activation in a CLIC1-dependent manner. Thus, CLIC1 may be a potential therapeutic target for NLRP3 inflammasome-mediated pathological conditions.