• 제목/요약/키워드: Acid-etched

검색결과 298건 처리시간 0.028초

Comparison of alkaline phosphatase activity of MC3T3-E1 cells cultured on different Ti surfaces: modified sandblasted with large grit and acid-etched (MSLA), laser-treated, and laser and acid-treated Ti surfaces

  • Li, Lin-Jie;Kim, So-Nam;Cho, Sung-Am
    • The Journal of Advanced Prosthodontics
    • /
    • 제8권3호
    • /
    • pp.235-240
    • /
    • 2016
  • PURPOSE. In this study, the aim of this study was to evaluate the effect of implant surface treatment on cell differentiation of osteoblast cells. For this purpose, three surfaces were compared: (1) a modified SLA (MSLA: sand-blasted with large grit, acid-etched, and immersed in 0.9% NaCl), (2) a laser treatment (LT: laser treatment) titanium surface and (3) a laser and acid-treated (LAT: laser treatment, acid-etched) titanium surface. MATERIALS AND METHODS. The MSLA surfaces were considered as the control group, and LT and LAT surfaces as test groups. Alkaline phosphatase expression (ALP) was used to quantify osteoblastic differentiation of MC3T3-E1 cell. Surface roughness was evaluated by a contact profilometer (URFPAK-SV; Mitutoyo, Kawasaki, Japan) and characterized by two parameters: mean roughness (Ra) and maximum peak-to-valley height (Rt). RESULTS. Scanning electron microscope revealed that MSLA (control group) surface was not as rough as LT, LAT surface (test groups). Alkaline phosphatase expression, the measure of osteoblastic differentiation, and total ALP expression by surface-adherent cells were found to be highest at 21 days for all three surfaces tested (P<.05). Furthermore, ALP expression levels of MSLA and LAT surfaces were significantly higher than expression levels of LT surface-adherent cells at 7, 14, and 21 days, respectively (P<.05). However, ALP expression levels between MSLA and LAT surface were equal at 7, 14, and 21 days (P>.05). CONCLUSION. This study suggested that MSLA and LAT surfaces exhibited more favorable environment for osteoblast differentiation when compared with LT surface, the results that are important for implant surface modification studies.

Double Textured AZO Film and Glass Substrate by Wet Etching Method for Solar Cell Application

  • 정원석;남상훈;부진효
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.594-594
    • /
    • 2012
  • Al doped ZnO (AZO) thin films were deposited on textured glass substrate by magnetron sputtering method. Also, AZO films on textured glass were etched by hydrochloric acid (HCl). Average thickness of etched AZO films are 90 nm. We observed morphology of AZO film by AFM with various etchant concentration and etching time. Etched AZO films have low resistivity and high haze. The surface RMS roughness of AZO film was increased from 53.8 nm to 84.5 nm. The haze ratio was also enhanced in above 700 nm of wavelength due to light trapping effect was increased by rough AZO surface. The etched AZO films on textured glass are applicable to fabricate solar cell.

  • PDF

테이퍼드 직선형 SLA 임플란트의 안정성 평가 (Evaluation of the stability of sandblasted, large-grit, acid-etched implants with tapered straight body design)

  • 김용건;이규복
    • 구강회복응용과학지
    • /
    • 제34권2호
    • /
    • pp.80-88
    • /
    • 2018
  • 목적: 임플란트 표면의 특성과 임플란트 디자인은 성공적인 초기 고정을 얻는데 중요한 변수이다. 이 연구의 목적은 치유기간 동안 테이퍼드 직선형 디자인을 가진 SLA (Sandblasted and Acid-etched) 임플란트의 ISQ (Implant Stability Quotient) 값을 측정하고 임플란트의 안정성에 미치는 영향을 평가하는 것이다. 연구 재료 및 방법: 임플란트의 안정성을 측정하기 위하여 26명의 환자(여자 13명, 남자 13명)의 44개 임플란트에 대한 자기공명주파수분석(Resonance Frequency Analysis)을 실시하였다. 골질 및 골량에 대한 임상적 평가는 Lekholm & Zarb (1985)의 기준에 따라 시행하였다. 시간경과에 따른 임플란트 안정성변화(총 ISQ 값)를 고정체 식립 시 그리고 12주후 치유지대주 연결 시 측정하고 RFA와 식립토크, RFA와 골질, RFA와 상, 하악골 사이의 상관관계를 평가하였다. 결과: 임플란트의 평균 ISQ값은 임플란트 식립 당시(기준선) $69.4{\pm}10.2$, 치유지대주연결에서(두번째수술) $81.4{\pm}6.9$였다(P < 0.05). RFA와 골질, RFA와 상하악골 사이에 유의한 차이가 있었다(P < 0.05). RFA와 식립토크, 식립부위, 고정체 직경, 임플란트 길이 사이에는 유의한 차이가 없었다(P > 0.05). 결론: 본 연구의 제한된 범위내에서 테이퍼드 직선형 디자인을 가진 SLA 임플란트의 ISQ값은 고정체 식립시와 치유지대주 연결 시 모두 높은 값을 보였다. 따라서 테이퍼드 직선형 디자인을 가진 SLA 임플란트는 초기안정성 및 2차 안정성을 향상시킬 수 있으며, 즉시 또는 초기하중을 적용할 수 있을것으로 사료된다.

Nd : YAG 레이저가 상아질 및 도재와 복합레진간의 결합강도에 미치는 영향 (AN EFFECT OF ND : YAG LASER ON THE BONDING STRENGTH OF COMPOSITE RESIN TO DENTIN AND PORCELAIN)

  • 우금진;양홍서
    • 대한치과보철학회지
    • /
    • 제35권2호
    • /
    • pp.385-399
    • /
    • 1997
  • The purpose of this experiment was to determine the effects of etching with a Nd : YAG Laser on dentin, or porcelain surface on the bond strength with composite resin. The dentin specimens were devided into the following 4 groups. D1 : No treatment D2 : Etched with 10% phosphoric acid D3 : Laser etchded with 1W, 20PPs D4 : Laser etched with 2W, 20PPS The procelain specimens were devided into the following 4 groups. P1 : diamond roughened P2 : etched with HF acid P3 : Laser etched with 2W, 20PPS P4 : Laser etched with 3W, 20PPS All specimens were veneered with resin. One half of the specimens were stored in $37^{\circ}C$ water for one day and the other half were thermocycled 1000 times at temperature of $5^{\circ}C\;to\;55^{\circ}C$ at 20 seconds intervals. After that, the bonding strength of composite resin to the dentin and porcelain was measured. The surface treated state and fractured state were observed with SEM. The following results were obtained. 1. In the dentin specimens, the bond strength of group D2 was highter than that of groups D1 and D3 in the case of the specimens stored in $37^{\circ}C$ water for one day, there was a statistically significant difference between group D2 and D1, D3 (P<0.05). The bonding strength of the specimens that were thermocycled decreased in the following order : group D2,D4,D3 and then D1. 2. In the porcelain specimens, the bonding strength of groups P1,P2 were higher than that of group P3 in the case of the specimens stored in $37^{\circ}C$ water for one day (P<0.05). The bonding strength of the specimens of being thermocycled decreased in the following order : group P2,P1,P4 and then P3. 3. The groups of high bond strength had a rougher surface and a high level of microporosity with SEM findings.

  • PDF

도재의 부식정도에 따른 접합강도에 관한 실험적 연구 (AN EXPERIMENTAL STUDY ON BOND STRENGTH OF ETCHED PORCELAIN)

  • 조경;이호용
    • 대한치과보철학회지
    • /
    • 제24권1호
    • /
    • pp.177-189
    • /
    • 1986
  • To investigate the bond strength of etched porcelain, porcelain specimens were etched by 5% hydrofluoric acid during the time of 2.5 min., 5 min., 7.5 min., and 10 min. at $23^{\circ}C$ and observed by SEM. Also, electrolytically etched metal was observed by SEM. Etched porcelain specimens were treated or were not treated with Silane coupling agent and bonded to etched metals with Comspan and Panavia. The bonded specimens were stored in water at $37^{\circ}C$. 24 hours after bonding, the bond strengths were measured. There were four groups of 25 specimens each. Group 1 was bonded with Panavia. Group 2 was bonded with Panavia after treated with Silane coupling agent. Group 3 was bonded with Comspan, Group 4 was bonded with Comspan after treated with Silane coupling agent. The results were as follows: 1. he etched porcelains were obviously observed by SEM. 2. The dendritic arms were observed in etched metal by SEM. 3. The bond strength in relation to the increase of etching time increased and an analysis of variance shows significantly different at the 0.01 level in all groups. 4. The bond strength of Silane coupling agent treated groups were higher than the untreated. 5. The ratios of increase of the bond strengths of Silane coupling agent treated groups in relation to the increase of etching of etching time were lower than the untreated. 6. The bond strength of the groups used Comspan were higher than Panavia.

  • PDF

첨가제에 의한 알루미늄박의 에칭특성변화 (Effects of the Additives on Etching Characteristics of Aluminum Foil)

  • 김성갑;신동철;장재명;이종호;오한준;지충수
    • 한국재료학회지
    • /
    • 제11권1호
    • /
    • pp.48-54
    • /
    • 2001
  • 고순도알루미늄 유전체의 내부표면적을 증가시키기 위하여 1M의 염산 에칭용액에 첨가제를 사용했을 때 나타나는 에칭특성의 변화를 조사하였다. 염산용액에 에틸렌글리콜이 첨가된 혼합용액에서 에칭을 실시했을 경우 알루미늄 기지 표면에 미세하고 균일한 에치피트가 형성되어 표면적 증가 효과가 크게 나타났으며, 또한 양극 산화 후 측정된 정전용량의 결과에서도 에틸렌 글리콜이 첨가된 에칭액에서 제조된 유전체는 표면적 증가에 의한 높은 정전용량 값을 나타냈다.

  • PDF

Effect of Chemically Etched Surface Microstructure on Tribological Behaviors

  • Hye-Min Kwon;Sung-Jun Lee;Chang-Lae Kim
    • Tribology and Lubricants
    • /
    • 제40권3호
    • /
    • pp.84-90
    • /
    • 2024
  • This study investigates the effect of the surface microstructure on the tribological characteristics of glass substrates. Chemical etching using hydrofluoric acid and ammonium hydrogen fluoride was employed to create controlled asperity structures on glass surfaces. By varying the etching time from 10 to 50 min, different surface morphologies were obtained and characterized using optical microscopy, surface roughness measurements, and water contact angle analysis. Friction tests were performed using a stainless steel ball as the counter surface to evaluate the tribological behavior of the etched specimens. The results showed that the specimen etched for 20 min exhibited the lowest and most stable friction coefficient, which was attributed to the formation of a uniform and dense asperity structure that effectively reduced the stress concentration and wear at the contact interface. In contrast, specimens etched for shorter (10 min) or longer (30-50 min) durations displayed higher friction coefficients and accelerated wear owing to nonuniform asperity structures that led to local stress concentration. Optical microscopy of the wear tracks further confirmed the superior wear resistance of the 20-minute etched specimen. These findings highlight the importance of optimizing the etching process parameters to achieve the desired surface morphology for enhanced tribological performance, suggesting the potential of chemical etching as a surface modification technique for various materials in tribological applications.

Glass ionomer cement 표면의 산부식 효과에 관한 연구 (THE EFFECT OF ACID ETCHING ON GLASS IONOMER CEMENT SURFACES)

  • 한승원;박상진;민병순;최호영;최기운
    • Restorative Dentistry and Endodontics
    • /
    • 제18권1호
    • /
    • pp.1-26
    • /
    • 1993
  • The purpose of this study was to investigate the effect of acid etching on the surface appearance and fracture toughness of five glass ionomer cements. Five kinds of commercially available glass ionomer cements including chemical curing filling type, chemical curing lining type, chemical curing metal reinforced type, light curing tilling type and light curing lining type were used for this study. The specimens for SEM study were fabricated by treating each glass ionomer cement with either visible light curing or self curing after being inserted into a rubber mold (diameter 4mm, depth 1mm). Some of the specimens were etched with 37% phosphoric acid for 0, 15, 30, 60, go seconds, at 5 minutes, 1 hour and 1 day after mixing of powder and liquid. Unetched ones comprised the control group and the others were the experimental groups. The surface texture was examined by using scanning electron microscope at 20 kV. (S-2300, Hitachi Co., Japan). The specimens for fracture toughness were fabricated by curing of each glass ionomer cement previously inserted into a metal mold for the single edge notch specimen according to the ASTME399. They were subjected to a three-point bend test after etching for 0, 30, 60, and 90 seconds at 5 minutes-, 1 hour-and 1 day-lapse after the fabrication of the specimens. The plane strain fracture toughness ($K_{IC}$) was determined by three-point bend test which was conducted with cross-head speed of 0.5 mm/min using Instron universal testing machine (Model No. 1122) following seven days storage of the etched specimens under $37^{\circ}C$, 100% humidity condition. Following conclusions were drawn. 1. In unetched control group, crack was present, but the surface was generally smooth. 2. Deterioration of the surface appearance such as serious dissolving of gel matrix and loss of glass particles occured as the etching time was increased beyond 15 s following Immediate etching of chemical curing type of glass ionomer cements. 3. Etching after 1 h, and 1 d reduced surface damage, 15 s, and 30s etch gave rough surface appearance without loss of glass particle of chemical curing type of glass ionomer cements. 4. Light curing type glass ionomer cement was etched by acid, but there was no difference in surface appearances according to various waiting periods. 5. It was found that the value of plane stram fracture toughness of glass ionomer cements was highest in the light curing filling type as $1.79\;MNm^{-1.5}$ followed by the light curing lining type, chemical curing metal reinforced type, chemical curing filling type and chemical curing lining type. 6. The value of plane stram fracture toughness of the chemical curing lining type glass ionomer cement etched after 5 minutes was lower than those of the cement etched after 1 hour or day or unetched (P < 0.05). 7. Light curing glass ionomer cement showed Irregular fractured surface and chemical curing cement showed smooth fractured surface.

  • PDF

광중합 GIC충전후 경과시간 및 표면처리에 따른 복합레진과의 결합강도에 관한 연구 (THE SHEAR BOND STRENGTHS OF COMPOSITE RESINS TO GLASS IONOMER CEMENTS BY SURFACE TREATMENT AND ELAPSED TIME)

  • 정혜인;김신;정태성
    • 대한소아치과학회지
    • /
    • 제24권1호
    • /
    • pp.82-94
    • /
    • 1997
  • For the purpose of establishing the most appropriate method of bonding between glass ionomer liners and composite resin and comparing the materials for sandwich technique, an experiment was performed to measure the shear bond strengths between the two with the variables in the surface treatment of liners and elapsed time till composite buildup. Materials used were Vitrebond and Fuji II LC, each as the restorative and liner respectively, and each group was subdivided by surface treatment (acid etching and sandblasting) and time elapsed from GIC filling to composite buildup (immediately, 1 day, 7 days), consisting 12 groups as a whole. Each subgroup was composed of 10 specimens and the shear bond strength between GIC liners and composite resin was measured under UTM and analyzed. The result were as follows: 1. The shear bond strength between two materials was highest when initially filled Fuji II LC was sandblasted after 1 days and composite built-up (Group FS1). And the lowest value was found when GIC was acid-etched after 7 days and composite built-up (Group FE7). Significant difference was found between the two groups. (P<0.01) 2. In regard of surface treatment of GI liners, acid-etched group (VE) showed higher bond strength than sandblasted group (VS) for Vitrebond. But, the reverse was true for Fuji II LC. (P<0.05) 3. In regard to the time elapsed from GI filling to composite buildup, the group of 1 day elapse showed relatively higher strength for Vitrebond. On the contrary, immediate buildup group (FE0) was stronger for acid-etched group and 1 day elapse group(FS1) was higher for sand-blasted group in Fuji II LC. (P<0.05)

  • PDF

Ruthenium CMP에서 Cerium Ammonium Nitrate와 알루미나 연마 입자가 연마 거동에 미치는 영향 (Effect of Cerium Ammonium Nitrate and Alumina Abrasive Particles on Polishing Behavior in Ruthenium Chemical Mechanical Planarization)

  • 이상호;이승호;강영재;김인권;박진구
    • 한국전기전자재료학회논문지
    • /
    • 제18권9호
    • /
    • pp.803-809
    • /
    • 2005
  • Cerium ammonium nitrate (CAN) and nitric acid was used an etchant and an additive for Ru etching and polishing. pH and Eh values of the CAN and nitric acid added chemical solution satisfied the Ru etching condition. The etch rate increased linearly as the concentration of CAN increased. Nitric acid added solution had the high etch rate. But micro roughness of etched surfaces was not changed before and after etching, The removal rate of Ru film was the highest in $1wt\%$ abrasive added slurry, and not increased despite the concentration of alumina abrasive increased to $5wt\%$. Even Ru film was polished by only CAN solution due to the friction. The highest removal rate of 120nm/min was obtained in 1 M nitric acid and $1wt\%$ alumina abrasive particles added slurry. The lowest micro roughness value was observed in this slurry after polishing. From the XPS analysis of etched Ru surface, oxide layer was founded on the etched Ru surface. Therefore, Ru was polished by chemical etching of CAN solution and oxide layer abrasion by abrasive particles. From the result of removal rate without abrasive particle, the etching of CAN solution is more dominant to the Ru CMP.